These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
529 related articles for article (PubMed ID: 19557243)
1. Presence and mobility of arsenic in estuarine wetland soils of the Scheldt estuary (Belgium). Du Laing G; Chapagain SK; Dewispelaere M; Meers E; Kazama F; Tack FM; Rinklebe J; Verloo MG J Environ Monit; 2009 Apr; 11(4):873-81. PubMed ID: 19557243 [TBL] [Abstract][Full Text] [Related]
2. Groundwater derived arsenic in high carbonate wetland soils: sources, sinks, and mobility. Bauer M; Fulda B; Blodau C Sci Total Environ; 2008 Aug; 401(1-3):109-20. PubMed ID: 18495216 [TBL] [Abstract][Full Text] [Related]
3. Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction. Beesley L; Moreno-Jiménez E; Clemente R; Lepp N; Dickinson N Environ Pollut; 2010 Jan; 158(1):155-60. PubMed ID: 19683374 [TBL] [Abstract][Full Text] [Related]
4. Heavy metal mobility in intertidal sediments of the Scheldt estuary: Field monitoring. Du Laing G; Meers E; Dewispelaere M; Vandecasteele B; Rinklebe J; Tack FM; Verloo MG Sci Total Environ; 2009 Apr; 407(8):2919-30. PubMed ID: 19167025 [TBL] [Abstract][Full Text] [Related]
5. Arsenic in the soils of Zimapán, Mexico. Ongley LK; Sherman L; Armienta A; Concilio A; Salinas CF Environ Pollut; 2007 Feb; 145(3):793-9. PubMed ID: 16872728 [TBL] [Abstract][Full Text] [Related]
6. The influence of water-soluble As(III) and As(V) on dehydrogenase activity in soils affected by mine tailings. Fernández P; Sommer I; Cram S; Rosas I; Gutiérrez M Sci Total Environ; 2005 Sep; 348(1-3):231-43. PubMed ID: 16162327 [TBL] [Abstract][Full Text] [Related]
7. Mineralogical and geochemical controls of arsenic speciation and mobility under different redox conditions in soil, sediment and water at the Mokrsko-West gold deposit, Czech Republic. Drahota P; Rohovec J; Filippi M; Mihaljevic M; Rychlovský P; Cervený V; Pertold Z Sci Total Environ; 2009 May; 407(10):3372-84. PubMed ID: 19217143 [TBL] [Abstract][Full Text] [Related]
8. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content. Dobran S; Zagury GJ Sci Total Environ; 2006 Jul; 364(1-3):239-50. PubMed ID: 16055167 [TBL] [Abstract][Full Text] [Related]
9. Distribution and variability of redox zones controlling spatial variability of arsenic in the Mississippi River Valley alluvial aquifer, southeastern Arkansas. Sharif MU; Davis RK; Steele KF; Kim B; Hays PD; Kresse TM; Fazio JA J Contam Hydrol; 2008 Jul; 99(1-4):49-67. PubMed ID: 18486990 [TBL] [Abstract][Full Text] [Related]
10. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713 [TBL] [Abstract][Full Text] [Related]
11. Arsenic concentrations in soils impacted by dam failure of coal-ash pond in Zemianske Kostolany, Slovakia. Jurkovič L; Hiller E; Veselská V; Pet'ková K Bull Environ Contam Toxicol; 2011 Apr; 86(4):433-7. PubMed ID: 21331534 [TBL] [Abstract][Full Text] [Related]
12. Spatial variability of arsenic and chromium in the soil water at a former wood preserving site. Hopp L; Peiffer S; Durner W J Contam Hydrol; 2006 May; 85(3-4):159-78. PubMed ID: 16530293 [TBL] [Abstract][Full Text] [Related]
13. Dynamics of arsenic in agricultural soils irrigated with arsenic contaminated groundwater in Bangladesh. Saha GC; Ali MA Sci Total Environ; 2007 Jul; 379(2-3):180-9. PubMed ID: 17067657 [TBL] [Abstract][Full Text] [Related]
14. Iron and arsenic release from aquifer solids in response to biostimulation. McLean JE; Dupont RR; Sorensen DL J Environ Qual; 2006; 35(4):1193-203. PubMed ID: 16825439 [TBL] [Abstract][Full Text] [Related]
15. Effects of incubation on solubility and mobility of trace metals in two contaminated soils. Ma LQ; Dong Y Environ Pollut; 2004 Aug; 130(3):301-7. PubMed ID: 15182963 [TBL] [Abstract][Full Text] [Related]
16. Distribution and availability of arsenic in soils from the industrialized urban area of Beijing, China. Luo W; Lu Y; Wang G; Shi Y; Wang T; Giesy JP Chemosphere; 2008 Jun; 72(5):797-802. PubMed ID: 18430453 [TBL] [Abstract][Full Text] [Related]
17. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction? Grybos M; Davranche M; Gruau G; Petitjean P J Colloid Interface Sci; 2007 Oct; 314(2):490-501. PubMed ID: 17692327 [TBL] [Abstract][Full Text] [Related]
18. Characterization of iron- and manganese-cemented redoximorphic aggregates in wetland soils contaminated with mine wastes. Hickey PJ; McDaniel PA; Strawn DG J Environ Qual; 2008; 37(6):2375-85. PubMed ID: 18948492 [TBL] [Abstract][Full Text] [Related]
19. Arsenic retention and release in ombrotrophic peatlands. Rothwell JJ; Taylor KG; Ander EL; Evans MG; Daniels SM; Allott TE Sci Total Environ; 2009 Feb; 407(4):1405-17. PubMed ID: 19010516 [TBL] [Abstract][Full Text] [Related]
20. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China. Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]