BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 19557353)

  • 1. Cloning, expression, and characterization of xylose reductase with higher activity from Candida tropicalis.
    Zhang F; Qiao D; Xu H; Liao C; Li S; Cao Y
    J Microbiol; 2009 Jun; 47(3):351-7. PubMed ID: 19557353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis.
    Lee JK; Koo BS; Kim SY
    Appl Environ Microbiol; 2003 Oct; 69(10):6179-88. PubMed ID: 14532079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    J Biotechnol; 2012 Apr; 158(4):192-202. PubMed ID: 21903144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical properties of xylose reductase prepared from adapted strain of Candida tropicalis.
    Rafiqul IS; Sakinah AM
    Appl Biochem Biotechnol; 2015 Jan; 175(1):387-99. PubMed ID: 25300602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting the NADPH pool for xylitol production using recombinant Saccharomyces cerevisiae.
    Reshamwala SMS; Lali AM
    Biotechnol Prog; 2020 May; 36(3):e2972. PubMed ID: 31990139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis.
    Jeon WY; Yoon BH; Ko BS; Shim WY; Kim JH
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):191-8. PubMed ID: 21922311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.
    Lee SH; Kodaki T; Park YC; Seo JH
    J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification, crystallization and preliminary X-ray crystallographic analysis of xylose reductase from Candida tropicalis.
    Chen LC; Huang SC; Chuankhayan P; Chen CD; Huang YC; Jeyakanthan J; Pang HF; Men LC; Chen YC; Wang YK; Liu MY; Wu TK; Chen CJ
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Apr; 65(Pt 4):419-21. PubMed ID: 19342796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous expression, purification, and characterization of a highly active xylose reductase from Neurospora crassa.
    Woodyer R; Simurdiak M; van der Donk WA; Zhao H
    Appl Environ Microbiol; 2005 Mar; 71(3):1642-7. PubMed ID: 15746370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving ethanol and xylitol fermentation at elevated temperature through substitution of xylose reductase in Kluyveromyces marxianus.
    Zhang B; Li L; Zhang J; Gao X; Wang D; Hong J
    J Ind Microbiol Biotechnol; 2013 Apr; 40(3-4):305-16. PubMed ID: 23392758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae.
    Jo JH; Oh SY; Lee HS; Park YC; Seo JH
    Biotechnol J; 2015 Dec; 10(12):1935-43. PubMed ID: 26470683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterologous expression, purification, and characterization of xylose reductase from Candida shehatae.
    Wang X; Fang B; Luo J; Li W; Zhang L
    Biotechnol Lett; 2007 Sep; 29(9):1409-12. PubMed ID: 17653624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of bifunctional enzymes with xylose reductase and xylitol dehydrogenase activity in Saccharomyces cerevisiae alters product formation during xylose fermentation.
    Anderlund M; Rådström P; Hahn-Hägerdal B
    Metab Eng; 2001 Jul; 3(3):226-35. PubMed ID: 11461145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Point mutation of the xylose reductase (XR) gene reduces xylitol accumulation and increases citric acid production in Aspergillus carbonarius.
    Weyda I; Lübeck M; Ahring BK; Lübeck PS
    J Ind Microbiol Biotechnol; 2014 Apr; 41(4):733-9. PubMed ID: 24570325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase.
    Runquist D; Hahn-Hägerdal B; Bettiga M
    Appl Environ Microbiol; 2010 Dec; 76(23):7796-802. PubMed ID: 20889775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography.
    Petschacher B; Leitgeb S; Kavanagh KL; Wilson DK; Nidetzky B
    Biochem J; 2005 Jan; 385(Pt 1):75-83. PubMed ID: 15320875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversal of coenzyme specificity and improvement of catalytic efficiency of Pichia stipitis xylose reductase by rational site-directed mutagenesis.
    Zeng QK; Du HL; Wang JF; Wei DQ; Wang XN; Li YX; Lin Y
    Biotechnol Lett; 2009 Jul; 31(7):1025-9. PubMed ID: 19330484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.