These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 19557450)

  • 41. Safety Assessment of Bacillus thuringiensis Insecticidal Proteins Cry1C and Cry2A with a Zebrafish Embryotoxicity Test.
    Gao YJ; Zhu HJ; Chen Y; Li YH; Peng YF; Chen XP
    J Agric Food Chem; 2018 May; 66(17):4336-4344. PubMed ID: 29653490
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An overview of the safety and biological effects of Bacillus thuringiensis Cry toxins in mammals.
    Rubio-Infante N; Moreno-Fierros L
    J Appl Toxicol; 2016 May; 36(5):630-48. PubMed ID: 26537666
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Bacillus thuringiensis: a biotechnology model].
    Sanchis V; Lereclus D
    J Soc Biol; 1999; 193(6):523-30. PubMed ID: 10783711
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects and mechanisms of Bacillus thuringiensis crystal toxins for mosquito larvae.
    Zhang Q; Hua G; Adang MJ
    Insect Sci; 2017 Oct; 24(5):714-729. PubMed ID: 27628909
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Food safety knowledge on the Bt mutant protein Cry8Ka5 employed in the development of coleopteran-resistant transgenic cotton plants.
    Farias DF; Peijnenburg AA; Grossi-de-Sá MF; Carvalho AF
    Bioengineered; 2015; 6(6):323-7. PubMed ID: 26513483
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Monitoring Bacillus thuringiensis-susceptibility in insect pests that occur in large geographies: how to get the best information when two countries are involved.
    Blanco CA; Perera OP; Boykin D; Abel C; Gore J; Matten SR; Ramírez-Sagahon JC; Terán-Vargas AP
    J Invertebr Pathol; 2007 Jul; 95(3):201-7. PubMed ID: 17499760
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Impact of Antibiotics on Efficacy of Cry Toxins Produced in Two Different Genetically Modified Bt Maize Varieties in Two Lepidopteran Herbivore Species,
    Hilbeck A; Defarge N; Bøhn T; Krautter M; Conradin C; Amiel C; Panoff JM; Trtikova M
    Toxins (Basel); 2018 Nov; 10(12):. PubMed ID: 30477136
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transgenic Bacillus thuringiensis (Bt) rice is safer to aquatic ecosystems than its non-transgenic counterpart.
    Li G; Wang Y; Liu B; Zhang G
    PLoS One; 2014; 9(8):e104270. PubMed ID: 25105299
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stacked Bt maize and arthropod predators: exposure to insecticidal Cry proteins and potential hazards.
    Svobodová Z; Shu Y; Skoková Habuštová O; Romeis J; Meissle M
    Proc Biol Sci; 2017 Jul; 284(1859):. PubMed ID: 28724730
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cry6Aa1, a
    Fortea E; Lemieux V; Potvin L; Chikwana V; Griffin S; Hey T; McCaskill D; Narva K; Tan SY; Xu X; Vachon V; Schwartz JL
    J Biol Chem; 2017 Aug; 292(32):13122-13132. PubMed ID: 28623231
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Performance of Daphnia magna on flour, leaves, and pollen from different maize lines: Implications for risk assessment of genetically engineered crops.
    Chen Y; Romeis J; Meissle M
    Ecotoxicol Environ Saf; 2021 Apr; 212():111967. PubMed ID: 33524911
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Endogenous expression of a Bt toxin receptor in the Cry1Ac-susceptible insect cell line and its synergistic effect with cadherin on cytotoxicity of activated Cry1Ac.
    Chen Z; He F; Xiao Y; Liu C; Li J; Yang Y; Ai H; Peng J; Hong H; Liu K
    Insect Biochem Mol Biol; 2015 Apr; 59():1-17. PubMed ID: 25662100
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of Bt-toxin uptake by the non-target herbivore, Myzus persicae (Hemiptera: Aphididae), feeding on transgenic oilseed rape.
    Burgio G; Lanzoni A; Accinelli G; Dinelli G; Bonetti A; Marotti I; Ramilli F
    Bull Entomol Res; 2007 Apr; 97(2):211-5. PubMed ID: 17411484
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Asymmetrical cross-resistance between Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in pink bollworm.
    Tabashnik BE; Unnithan GC; Masson L; Crowder DW; Li X; Carrière Y
    Proc Natl Acad Sci U S A; 2009 Jul; 106(29):11889-94. PubMed ID: 19581574
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ingestion and excretion of two transgenic Bt corn varieties by slugs.
    Zurbrügg C; Nentwig W
    Transgenic Res; 2009 Apr; 18(2):215-25. PubMed ID: 18763046
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bt-toxin uptake by the non-target herbivore, Myzus persicae (Hemiptera: Aphididae), feeding on transgenic oilseed rape in laboratory conditions.
    Burgio G; Dinelli G; Marotti I; Zurla M; Bosi S; Lanzoni A
    Bull Entomol Res; 2011 Apr; 101(2):241-7. PubMed ID: 21034523
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of a Novel Insecticidal Protein Cry9Cb1 from Bacillus thuringiensis.
    Shan Y; Shu C; He K; Cheng X; Geng L; Xiang W; Zhang J
    J Agric Food Chem; 2019 Apr; 67(13):3781-3788. PubMed ID: 30865469
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Insecticidal Activity of
    Domínguez-Arrizabalaga M; Villanueva M; Escriche B; Ancín-Azpilicueta C; Caballero P
    Toxins (Basel); 2020 Jun; 12(7):. PubMed ID: 32610662
    [No Abstract]   [Full Text] [Related]  

  • 59. Two ABC transporters are differentially involved in the toxicity of two Bacillus thuringiensis Cry1 toxins to the invasive crop-pest Spodoptera frugiperda (J. E. Smith).
    Jin M; Yang Y; Shan Y; Chakrabarty S; Cheng Y; Soberón M; Bravo A; Liu K; Wu K; Xiao Y
    Pest Manag Sci; 2021 Mar; 77(3):1492-1501. PubMed ID: 33145907
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Extrapolating non-target risk of Bt crops from laboratory to field.
    Duan JJ; Lundgren JG; Naranjo S; Marvier M
    Biol Lett; 2010 Feb; 6(1):74-7. PubMed ID: 19740894
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.