These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
380 related articles for article (PubMed ID: 19557524)
1. A new concept for reduction of diffuse contamination by simultaneous application of pesticide and pesticide-degrading microorganisms. Onneby K; Jonsson A; Stenström J Biodegradation; 2010 Feb; 21(1):21-9. PubMed ID: 19557524 [TBL] [Abstract][Full Text] [Related]
2. Transcription dynamics of the functional tfdA gene during MCPA herbicide degradation by Cupriavidus necator AEO106 (pRO101) in agricultural soil. Nicolaisen MH; Baelum J; Jacobsen CS; Sørensen J Environ Microbiol; 2008 Mar; 10(3):571-9. PubMed ID: 18190516 [TBL] [Abstract][Full Text] [Related]
3. Role of eukaryotic microbiota in soil survival and catabolic performance of the 2,4-D herbicide degrading bacteria Cupriavidus necator JMP134. Manzano M; Morán AC; Tesser B; González B Antonie Van Leeuwenhoek; 2007 Feb; 91(2):115-26. PubMed ID: 17043913 [TBL] [Abstract][Full Text] [Related]
4. Dissipation of 2,4-D in soils of the Humid Pampa region, Argentina: a microcosm study. Merini LJ; Cuadrado V; Flocco CG; Giulietti AM Chemosphere; 2007 Jun; 68(2):259-65. PubMed ID: 17316752 [TBL] [Abstract][Full Text] [Related]
5. Direct analysis of tfdA gene expression by indigenous bacteria in phenoxy acid amended agricultural soil. Baelum J; Nicolaisen MH; Holben WE; Strobel BW; Sørensen J; Jacobsen CS ISME J; 2008 Jun; 2(6):677-87. PubMed ID: 18356824 [TBL] [Abstract][Full Text] [Related]
6. Reduced leaching of the herbicide MCPA after bioaugmentation with a formulated and stored Sphingobium sp. Önneby K; Håkansson S; Pizzul L; Stenström J Biodegradation; 2014 Apr; 25(2):291-300. PubMed ID: 23982656 [TBL] [Abstract][Full Text] [Related]
7. Comamonas acidovorans strain MC1: a new isolate capable of degrading the chiral herbicides dichlorprop and mecoprop and the herbicides 2,4-D and MCPA. Müller RH; Jorks S; Kleinsteuber S; Babel W Microbiol Res; 1999 Dec; 154(3):241-6. PubMed ID: 10652787 [TBL] [Abstract][Full Text] [Related]
8. Spatial variation in 2-methyl-4-chlorophenoxyacetic acid mineralization and sorption in a sandy soil at field level. Fredslund L; Vinther FP; Brinch UC; Elsgaard L; Rosenberg P; Jacobsen CS J Environ Qual; 2008; 37(5):1918-28. PubMed ID: 18689753 [TBL] [Abstract][Full Text] [Related]
9. The potential for bioaugmentation of sand filter materials from waterworks using bacterial cultures degrading 4-chloro-2-methylphenoxyacetic acid. Krüger US; Johnsen AR; Burmølle M; Aamand J; Sørensen SR Pest Manag Sci; 2015 Feb; 71(2):257-65. PubMed ID: 24737598 [TBL] [Abstract][Full Text] [Related]
10. Study on the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chloro-phenoxyacetic sodium (MCPA sodium) in natural agriculture-soils of Fuzhou, China using capillary electrophoresis. Fu F; Xiao L; Wang W; Xu X; Xu L; Qi G; Chen G Sci Total Environ; 2009 Mar; 407(6):1998-2003. PubMed ID: 19101020 [TBL] [Abstract][Full Text] [Related]
11. 2,4-D impact on bacterial communities, and the activity and genetic potential of 2,4-D degrading communities in soil. Gonod LV; Martin-Laurent F; Chenu C FEMS Microbiol Ecol; 2006 Dec; 58(3):529-37. PubMed ID: 17117994 [TBL] [Abstract][Full Text] [Related]
12. Adhesion to sand and ability to mineralise low pesticide concentrations are required for efficient bioaugmentation of flow-through sand filters. Samuelsen ED; Badawi N; Nybroe O; Sørensen SR; Aamand J Appl Microbiol Biotechnol; 2017 Jan; 101(1):411-421. PubMed ID: 27734123 [TBL] [Abstract][Full Text] [Related]
13. Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-methylphenoxyacetic acid in water by using TiO2. Djebbar K; Zertal A; Sehili T Environ Technol; 2006 Nov; 27(11):1191-7. PubMed ID: 17203600 [TBL] [Abstract][Full Text] [Related]
14. Evidence for 2,4-D mineralisation in Mediterranean soils: impact of moisture content and temperature. Bouseba B; Zertal A; Beguet J; Rouard N; Devers M; Martin C; Martin-Laurent F Pest Manag Sci; 2009 Sep; 65(9):1021-9. PubMed ID: 19479783 [TBL] [Abstract][Full Text] [Related]
15. Degradation of 2,4-DB in Argentinean agricultural soils with high humic matter content. Cuadrado V; Merini LJ; Flocco CG; Giulietti AM Appl Microbiol Biotechnol; 2008 Jan; 77(6):1371-8. PubMed ID: 18004561 [TBL] [Abstract][Full Text] [Related]
16. Succession of bacterial and fungal 4-chloro-2-methylphenoxyacetic acid degraders at the soil-litter interface. Ditterich F; Poll C; Pagel H; Babin D; Smalla K; Horn MA; Streck T; Kandeler E FEMS Microbiol Ecol; 2013 Oct; 86(1):85-100. PubMed ID: 23560662 [TBL] [Abstract][Full Text] [Related]
17. Degradation of 4-chloro-2-methylphenoxyacetic acid in top- and subsoil is quantitatively linked to the class III tfdA gene. Baelum J; Henriksen T; Hansen HC; Jacobsen CS Appl Environ Microbiol; 2006 Feb; 72(2):1476-86. PubMed ID: 16461702 [TBL] [Abstract][Full Text] [Related]
18. Novel insight into the genetic context of the cadAB genes from a 4-chloro-2-methylphenoxyacetic acid-degrading Sphingomonas. Nielsen TK; Xu Z; Gözdereliler E; Aamand J; Hansen LH; Sørensen SR PLoS One; 2013; 8(12):e83346. PubMed ID: 24391756 [TBL] [Abstract][Full Text] [Related]
19. Consumers of 4-chloro-2-methylphenoxyacetic acid from agricultural soil and drilosphere harbor cadA, r/sdpA, and tfdA-like gene encoding oxygenases. Liu YJ; Liu SJ; Drake HL; Horn MA FEMS Microbiol Ecol; 2013 Oct; 86(1):114-29. PubMed ID: 23646893 [TBL] [Abstract][Full Text] [Related]
20. Rapid Biodegradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid by Cupriavidus gilardii T-1. Wu X; Wang W; Liu J; Pan D; Tu X; Lv P; Wang Y; Cao H; Wang Y; Hua R J Agric Food Chem; 2017 May; 65(18):3711-3720. PubMed ID: 28434228 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]