These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 19558174)

  • 21. Recommendations for terminology and databases for biochemical thermodynamics.
    Alberty RA; Cornish-Bowden A; Goldberg RN; Hammes GG; Tipton K; Westerhoff HV
    Biophys Chem; 2011 May; 155(2-3):89-103. PubMed ID: 21501921
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A kinetic investigation of high-temperature mercury oxidation by chlorine.
    Wilcox J
    J Phys Chem A; 2009 Jun; 113(24):6633-9. PubMed ID: 19469508
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints.
    Liebermeister W; Klipp E
    Theor Biol Med Model; 2006 Dec; 3():41. PubMed ID: 17173669
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flow-force relationships for a six-state proton pump model: intrinsic uncoupling, kinetic equivalence of input and output forces, and domain of approximate linearity.
    Pietrobon D; Caplan SR
    Biochemistry; 1985 Oct; 24(21):5764-76. PubMed ID: 4084491
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzyme-catalyzed and binding reaction kinetics determined by titration calorimetry.
    Hansen LD; Transtrum MK; Quinn C; Demarse N
    Biochim Biophys Acta; 2016 May; 1860(5):957-966. PubMed ID: 26721335
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermodynamics of Bioreactions.
    Held C; Sadowski G
    Annu Rev Chem Biomol Eng; 2016 Jun; 7():395-414. PubMed ID: 27276551
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermodynamic Activity-Based Solvent Design for Bioreactions.
    Wangler A; Held C; Sadowski G
    Trends Biotechnol; 2019 Oct; 37(10):1038-1041. PubMed ID: 31160055
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermodynamics and Kinetics of Glycolytic Reactions. Part II: Influence of Cytosolic Conditions on Thermodynamic State Variables and Kinetic Parameters.
    Vogel K; Greinert T; Reichard M; Held C; Harms H; Maskow T
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33113841
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic analysis of enzyme reactions with slow-binding inhibition.
    Garrido-del Solo C; García-Cánovas F; Havesteen BH; Castellanos RV
    Biosystems; 1999 Sep; 51(3):169-80. PubMed ID: 10530756
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantifying the allosteric properties of Escherichia coli carbamyl phosphate synthetase: determination of thermodynamic linked-function parameters in an ordered kinetic mechanism.
    Braxton BL; Mullins LS; Raushel FM; Reinhart GD
    Biochemistry; 1992 Mar; 31(8):2309-16. PubMed ID: 1531767
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermodynamics of enzyme-catalyzed reactions--a database for quantitative biochemistry.
    Goldberg RN; Tewari YB; Bhat TN
    Bioinformatics; 2004 Nov; 20(16):2874-7. PubMed ID: 15145806
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three mechanisms and rapid-equilibrium rate equations for a type of reductase reaction.
    Alberty RA
    Biophys Chem; 2007 Dec; 131(1-3):71-9. PubMed ID: 17928131
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recommendations for performing measurements of apparent equilibrium constants of enzyme-catalyzed reactions and for reporting the results of these measurements.
    Goldberg RN; Giessmann RT; Halling PJ; Kettner C; Westerhoff HV
    Beilstein J Org Chem; 2023; 19():303-316. PubMed ID: 36960304
    [TBL] [Abstract][Full Text] [Related]  

  • 34. THE NATURE AND CONTROL OF REACTIONS IN BIOLUMINESCENCE : WITH SPECIAL REFERENCE TO THE MECHANISM OF REVERSIBLE AND IRREVERSIBLE INHIBITIONS BY HYDROGEN AND HYDROXYL IONS, TEMPERATURE, PRESSURE, ALCOHOL, URETHANE, AND SULFANILAMIDE IN BACTERIA.
    Johnson FH; Eyring H; Steblay R; Chaplin H; Huber C; Gherardi G
    J Gen Physiol; 1945 May; 28(5):463-537. PubMed ID: 19873433
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unified dimensionless transformation in enzyme kinetics: Application to mathematical analyses of ten biochemical reaction systems.
    Yamane T
    Anal Biochem; 2020 Dec; 610():113794. PubMed ID: 32526199
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simplified velocity equations for characterizing the partial inhibition or nonessential activation of bireactant enzymes.
    Dewolf W; Segel IH
    J Enzyme Inhib; 2000; 15(4):311-33. PubMed ID: 10995065
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolutionary optimization of the catalytic effectiveness of an enzyme.
    Burbaum JJ; Raines RT; Albery WJ; Knowles JR
    Biochemistry; 1989 Nov; 28(24):9293-305. PubMed ID: 2611230
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two rules of enzyme kinetics for reversible Michaelis-Menten mechanisms.
    Keleti T
    FEBS Lett; 1986 Nov; 208(1):109-12. PubMed ID: 3770204
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An analysis of the kinetics of enzymatic systems with unstable species.
    Garrido-del Solo C; Havsteen BH; Varon R
    Biosystems; 1996; 38(1):75-86. PubMed ID: 8833750
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An investigation of the relationships between rate and driving force in simple uncatalysed and enzyme-catalysed reactions with applications of the findings to chemiosmotic reactions.
    Stoner CD
    Biochem J; 1992 Apr; 283 ( Pt 2)(Pt 2):541-52. PubMed ID: 1533514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.