BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

649 related articles for article (PubMed ID: 19558212)

  • 1. Mitochondrial glutathione, a key survival antioxidant.
    Marí M; Morales A; Colell A; García-Ruiz C; Fernández-Checa JC
    Antioxid Redox Signal; 2009 Nov; 11(11):2685-700. PubMed ID: 19558212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial glutathione: features, regulation and role in disease.
    Marí M; Morales A; Colell A; García-Ruiz C; Kaplowitz N; Fernández-Checa JC
    Biochim Biophys Acta; 2013 May; 1830(5):3317-28. PubMed ID: 23123815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial Glutathione: Recent Insights and Role in Disease.
    Marí M; de Gregorio E; de Dios C; Roca-Agujetas V; Cucarull B; Tutusaus A; Morales A; Colell A
    Antioxidants (Basel); 2020 Sep; 9(10):. PubMed ID: 32987701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial Glutathione in Cellular Redox Homeostasis and Disease Manifestation.
    Chen TH; Wang HC; Chang CJ; Lee SY
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38279310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IDH2 deficiency increases the liver susceptibility to ischemia-reperfusion injury via increased mitochondrial oxidative injury.
    Han SJ; Choi HS; Kim JI; Park JW; Park KM
    Redox Biol; 2018 Apr; 14():142-153. PubMed ID: 28938192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial glutathione and oxidative stress: implications for pulmonary oxygen toxicity in premature infants.
    O'Donovan DJ; Fernandes CJ
    Mol Genet Metab; 2000; 71(1-2):352-8. PubMed ID: 11001827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 2-oxoglutarate carrier promotes liver cancer by sustaining mitochondrial GSH despite cholesterol loading.
    Baulies A; Montero J; Matías N; Insausti N; Terrones O; Basañez G; Vallejo C; Conde de La Rosa L; Martinez L; Robles D; Morales A; Abian J; Carrascal M; Machida K; Kumar DBU; Tsukamoto H; Kaplowitz N; Garcia-Ruiz C; Fernández-Checa JC
    Redox Biol; 2018 Apr; 14():164-177. PubMed ID: 28942194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.
    Korge P; Calmettes G; Weiss JN
    Biochim Biophys Acta; 2015; 1847(6-7):514-25. PubMed ID: 25701705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical role of mitochondrial glutathione in the survival of hepatocytes during hypoxia.
    Lluis JM; Morales A; Blasco C; Colell A; Mari M; Garcia-Ruiz C; Fernandez-Checa JC
    J Biol Chem; 2005 Feb; 280(5):3224-32. PubMed ID: 15548523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial function and redox control in the aging eye: role of MsrA and other repair systems in cataract and macular degenerations.
    Brennan LA; Kantorow M
    Exp Eye Res; 2009 Feb; 88(2):195-203. PubMed ID: 18588875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial protection by the thioredoxin-2 and glutathione systems in an in vitro endothelial model of sepsis.
    Lowes DA; Galley HF
    Biochem J; 2011 May; 436(1):123-32. PubMed ID: 21355852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The thioredoxin antioxidant system.
    Lu J; Holmgren A
    Free Radic Biol Med; 2014 Jan; 66():75-87. PubMed ID: 23899494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of glutathione-S-transferase (GST) inhibition on lung epithelial cell injury: role of oxidative stress and metabolism.
    Fletcher ME; Boshier PR; Wakabayashi K; Keun HC; Smolenski RT; Kirkham PA; Adcock IM; Barton PJ; Takata M; Marczin N
    Am J Physiol Lung Cell Mol Physiol; 2015 Jun; 308(12):L1274-85. PubMed ID: 26078397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rat testicular mitochondrial antioxidant defence system and its modulation by aging.
    Sahoo DK; Roy A; Chainy GB
    Acta Biol Hung; 2008 Dec; 59(4):413-24. PubMed ID: 19133498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harmonization of Mangiferin on methylmercury engendered mitochondrial dysfunction.
    Das S; Paul A; Mumbrekar KD; Rao SB
    Environ Toxicol; 2017 Feb; 32(2):630-644. PubMed ID: 28071871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of oxidative stress generated from the mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function and activation of transcription factor nuclear factor-kappa B: studies with isolated mitochondria and rat hepatocytes.
    García-Ruiz C; Colell A; Morales A; Kaplowitz N; Fernández-Checa JC
    Mol Pharmacol; 1995 Nov; 48(5):825-34. PubMed ID: 7476912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox regulation and signaling lipids in mitochondrial apoptosis.
    Fernández-Checa JC
    Biochem Biophys Res Commun; 2003 May; 304(3):471-9. PubMed ID: 12729581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of short-term methionine restriction on glutathione synthetic capacity and antioxidant responses at the whole tissue and mitochondrial level in the rat liver.
    Tamanna N; Kroeker K; Braun K; Banh S; Treberg JR
    Exp Gerontol; 2019 Nov; 127():110712. PubMed ID: 31472257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging.
    Judge S; Jang YM; Smith A; Hagen T; Leeuwenburgh C
    FASEB J; 2005 Mar; 19(3):419-21. PubMed ID: 15642720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of moderate hypoxia/reoxygenation on mitochondrial adaptation to acute severe hypoxia.
    Gonchar O; Mankovskaya I
    Acta Biol Hung; 2009 Jun; 60(2):185-94. PubMed ID: 19584028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.