These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 19558228)
1. Dissolution behaviour of a nanoparticle in a microscale volume of solvent: thermodynamic and kinetic considerations. Vogelsberger W; Schmidt J Inhal Toxicol; 2009 Jul; 21 Suppl 1():8-16. PubMed ID: 19558228 [TBL] [Abstract][Full Text] [Related]
2. Dissolution kinetics of titanium dioxide nanoparticles: the observation of an unusual kinetic size effect. Schmidt J; Vogelsberger W J Phys Chem B; 2006 Mar; 110(9):3955-63. PubMed ID: 16509682 [TBL] [Abstract][Full Text] [Related]
3. Development in modeling submicron particle formation in two phases flow of solvent-supercritical antisolvent emulsion. Dukhin SS; Shen Y; Dave R; Pfeffer R Adv Colloid Interface Sci; 2007 Oct; 134-135():72-88. PubMed ID: 17568550 [TBL] [Abstract][Full Text] [Related]
4. The effect of process parameters on the Liquid Flame Spray generated titania nanoparticles. Aromaa M; Keskinen H; Mäkelä JM Biomol Eng; 2007 Nov; 24(5):543-8. PubMed ID: 17950664 [TBL] [Abstract][Full Text] [Related]
5. Surface-pressure isotherms of monolayers formed by microsize and nanosize particles. Fainerman VB; Kovalchuk VI; Lucassen-Reynders EH; Grigoriev DO; Ferri JK; Leser ME; Michel M; Miller R; Möhwald H Langmuir; 2006 Feb; 22(4):1701-5. PubMed ID: 16460093 [TBL] [Abstract][Full Text] [Related]
6. Strategies to control the particle size distribution of poly-epsilon-caprolactone nanoparticles for pharmaceutical applications. Lince F; Marchisio DL; Barresi AA J Colloid Interface Sci; 2008 Jun; 322(2):505-15. PubMed ID: 18402975 [TBL] [Abstract][Full Text] [Related]
7. A comparison of implicit- and explicit-solvent simulations of self-assembly in block copolymer and solute systems. Spaeth JR; Kevrekidis IG; Panagiotopoulos AZ J Chem Phys; 2011 Apr; 134(16):164902. PubMed ID: 21528979 [TBL] [Abstract][Full Text] [Related]
8. Multiutility sophorolipids as nanoparticle capping agents: synthesis of stable and water dispersible Co nanoparticles. Kasture M; Singh S; Patel P; Joy PA; Prabhune AA; Ramana CV; Prasad BL Langmuir; 2007 Nov; 23(23):11409-12. PubMed ID: 17935370 [TBL] [Abstract][Full Text] [Related]
9. Physico-chemical characterization in the light of toxicological effects. Meissner T; Potthoff A; Richter V Inhal Toxicol; 2009 Jul; 21 Suppl 1():35-9. PubMed ID: 19558232 [TBL] [Abstract][Full Text] [Related]
10. Molecular dynamics study of nanoparticle stability at liquid interfaces: effect of nanoparticle-solvent interaction and capillary waves. Cheung DL J Chem Phys; 2011 Aug; 135(5):054704. PubMed ID: 21823723 [TBL] [Abstract][Full Text] [Related]
11. Prednisolone multicomponent nanoparticle preparation by aerosol solvent extraction system. Moribe K; Fukino M; Tozuka Y; Higashi K; Yamamoto K Int J Pharm; 2009 Oct; 380(1-2):201-5. PubMed ID: 19576974 [TBL] [Abstract][Full Text] [Related]
12. The dissolution rates of SiO2 nanoparticles as a function of particle size. Diedrich T; Dybowska A; Schott J; Valsami-Jones E; Oelkers EH Environ Sci Technol; 2012 May; 46(9):4909-15. PubMed ID: 22482930 [TBL] [Abstract][Full Text] [Related]
13. Stabilized polymeric nanoparticles for controlled and efficient release of bifenthrin. Liu Y; Tong Z; Prud'homme RK Pest Manag Sci; 2008 Aug; 64(8):808-12. PubMed ID: 18366056 [TBL] [Abstract][Full Text] [Related]
14. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation. Pettibone JM; Cwiertny DM; Scherer M; Grassian VH Langmuir; 2008 Jun; 24(13):6659-67. PubMed ID: 18537279 [TBL] [Abstract][Full Text] [Related]
15. Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction. Kim KC; Dai B; Karl Johnson J; Sholl DS Nanotechnology; 2009 May; 20(20):204001. PubMed ID: 19420649 [TBL] [Abstract][Full Text] [Related]
16. Analysis of titanium nanoparticles created by laser irradiation under liquid environments. Golightly JS; Castleman AW J Phys Chem B; 2006 Oct; 110(40):19979-84. PubMed ID: 17020385 [TBL] [Abstract][Full Text] [Related]
17. Design of potent amorphous drug nanoparticles for rapid generation of highly supersaturated media. Matteucci ME; Brettmann BK; Rogers TL; Elder EJ; Williams RO; Johnston KP Mol Pharm; 2007; 4(5):782-93. PubMed ID: 17715989 [TBL] [Abstract][Full Text] [Related]
18. Dissipative particle dynamics simulation on a ternary system with nanoparticles, double-hydrophilic block copolymers, and solvent. Huang J; Luo M; Wang Y J Phys Chem B; 2008 Jun; 112(22):6735-41. PubMed ID: 18471006 [TBL] [Abstract][Full Text] [Related]
19. Nanoparticle infiltration to prepare solvent-free controlled drug delivery systems. Rodríguez-Cruz IM; Domínguez-Delgado CL; Escobar-Chávez JJ; Leyva-Gómez G; Ganem-Quintanar A; Quintanar-Guerrero D Int J Pharm; 2009 Apr; 371(1-2):177-81. PubMed ID: 19150491 [TBL] [Abstract][Full Text] [Related]
20. Biopolymer microparticle and nanoparticle formation within a microfluidic device. Rondeau E; Cooper-White JJ Langmuir; 2008 Jun; 24(13):6937-45. PubMed ID: 18510374 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]