BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 19558314)

  • 1. Regulation of osteogenesis-angiogenesis coupling by HIFs and VEGF.
    Schipani E; Maes C; Carmeliet G; Semenza GL
    J Bone Miner Res; 2009 Aug; 24(8):1347-53. PubMed ID: 19558314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The therapeutic potential of oxygen tension manipulation via hypoxia inducible factors and mimicking agents in guided bone regeneration. A review.
    Mamalis AA; Cochran DL
    Arch Oral Biol; 2011 Dec; 56(12):1466-75. PubMed ID: 21621191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of hypoxia in the regulation of osteogenesis and angiogenesis coupling in intraoral regenerative procedures: a review of the literature.
    Mamalis AA; Cochran DL
    Int J Periodontics Restorative Dent; 2013; 33(4):519-24. PubMed ID: 23820712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of hypoxia-inducible factor-1alpha in angiogenic-osteogenic coupling.
    Riddle RC; Khatri R; Schipani E; Clemens TL
    J Mol Med (Berl); 2009 Jun; 87(6):583-90. PubMed ID: 19415227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salidroside improves angiogenesis-osteogenesis coupling by regulating the HIF-1α/VEGF signalling pathway in the bone environment.
    Guo Q; Yang J; Chen Y; Jin X; Li Z; Wen X; Xia Q; Wang Y
    Eur J Pharmacol; 2020 Oct; 884():173394. PubMed ID: 32730833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling of osteogenesis and angiogenesis in bone substitute healing - a brief overview.
    Götz W; Reichert C; Canullo L; Jäger A; Heinemann F
    Ann Anat; 2012 Mar; 194(2):171-3. PubMed ID: 22055938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development.
    Wang Y; Wan C; Deng L; Liu X; Cao X; Gilbert SR; Bouxsein ML; Faugere MC; Guldberg RE; Gerstenfeld LC; Haase VH; Johnson RS; Schipani E; Clemens TL
    J Clin Invest; 2007 Jun; 117(6):1616-26. PubMed ID: 17549257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Type H blood vessels in bone modeling and remodeling.
    Peng Y; Wu S; Li Y; Crane JL
    Theranostics; 2020; 10(1):426-436. PubMed ID: 31903130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of angiogenesis on bone formation.
    Portal-Núñez S; Lozano D; Esbrit P
    Histol Histopathol; 2012 May; 27(5):559-66. PubMed ID: 22419020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust coupling of angiogenesis and osteogenesis by VEGF-decorated matrices for bone regeneration.
    Burger MG; Grosso A; Briquez PS; Born GME; Lunger A; Schrenk F; Todorov A; Sacchi V; Hubbell JA; Schaefer DJ; Banfi A; Di Maggio N
    Acta Biomater; 2022 Sep; 149():111-125. PubMed ID: 35835287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteogenesis and angiogenesis: the potential for engineering bone.
    Kanczler JM; Oreffo RO
    Eur Cell Mater; 2008 May; 15():100-14. PubMed ID: 18454418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low level laser therapy promotes bone regeneration by coupling angiogenesis and osteogenesis.
    Bai J; Li L; Kou N; Bai Y; Zhang Y; Lu Y; Gao L; Wang F
    Stem Cell Res Ther; 2021 Aug; 12(1):432. PubMed ID: 34344474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of vascular endothelial growth factor in ossification.
    Yang YQ; Tan YY; Wong R; Wenden A; Zhang LK; Rabie AB
    Int J Oral Sci; 2012 Jun; 4(2):64-8. PubMed ID: 22722639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micrornas at the Interface between Osteogenesis and Angiogenesis as Targets for Bone Regeneration.
    Fröhlich LF
    Cells; 2019 Feb; 8(2):. PubMed ID: 30717449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The hypoxia-inducible factor pathway, prolyl hydroxylase domain protein inhibitors, and their roles in bone repair and regeneration.
    Fan L; Li J; Yu Z; Dang X; Wang K
    Biomed Res Int; 2014; 2014():239356. PubMed ID: 24895555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The potential role of vascular endothelial growth factor (VEGF) in cartilage: how the angiogenic factor could be involved in the pathogenesis of osteoarthritis?
    Murata M; Yudoh K; Masuko K
    Osteoarthritis Cartilage; 2008 Mar; 16(3):279-86. PubMed ID: 17945514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VEGF and bone cell signalling: an essential vessel for communication?
    Clarkin CE; Gerstenfeld LC
    Cell Biochem Funct; 2013 Jan; 31(1):1-11. PubMed ID: 23129289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HIF-1α increases the osteogenic capacity of ADSCs by coupling angiogenesis and osteogenesis via the HIF-1α/VEGF/AKT/mTOR signaling pathway.
    Song S; Zhang G; Chen X; Zheng J; Liu X; Wang Y; Chen Z; Wang Y; Song Y; Zhou Q
    J Nanobiotechnology; 2023 Aug; 21(1):257. PubMed ID: 37550736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Angiogenesis-Based Scaffold of MesoporousBioactive Glass Nanofiber on Osteogenesis.
    Zheng W; Bai Z; Huang S; Jiang K; Liu L; Wang X
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VEGF: an essential mediator of both angiogenesis and endochondral ossification.
    Dai J; Rabie AB
    J Dent Res; 2007 Oct; 86(10):937-50. PubMed ID: 17890669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.