BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2052 related articles for article (PubMed ID: 19558559)

  • 1. Key targets of hormonal treatment of prostate cancer. Part 1: the androgen receptor and steroidogenic pathways.
    Vis AN; Schröder FH
    BJU Int; 2009 Aug; 104(4):438-48. PubMed ID: 19558559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New agents and strategies for the hormonal treatment of castration-resistant prostate cancer.
    Sharifi N
    Expert Opin Investig Drugs; 2010 Jul; 19(7):837-46. PubMed ID: 20524793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arachidonic acid activation of intratumoral steroid synthesis during prostate cancer progression to castration resistance.
    Locke JA; Guns ES; Lehman ML; Ettinger S; Zoubeidi A; Lubik A; Margiotti K; Fazli L; Adomat H; Wasan KM; Gleave ME; Nelson CC
    Prostate; 2010 Feb; 70(3):239-51. PubMed ID: 19790237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Castration-resistant prostate cancer: locking up the molecular escape routes.
    Attar RM; Takimoto CH; Gottardis MM
    Clin Cancer Res; 2009 May; 15(10):3251-5. PubMed ID: 19447877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prostate cancer cells increase androgen sensitivity by increase in nuclear androgen receptor and androgen receptor coactivators; a possible mechanism of hormone-resistance of prostate cancer cells.
    Fujimoto N; Miyamoto H; Mizokami A; Harada S; Nomura M; Ueta Y; Sasaguri T; Matsumoto T
    Cancer Invest; 2007 Feb; 25(1):32-7. PubMed ID: 17364555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hormone treatment for prostate cancer: current issues and future directions.
    Ichikawa T; Suzuki H; Ueda T; Komiya A; Imamoto T; Kojima S
    Cancer Chemother Pharmacol; 2005 Nov; 56 Suppl 1():58-63. PubMed ID: 16273367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer.
    Locke JA; Guns ES; Lubik AA; Adomat HH; Hendy SC; Wood CA; Ettinger SL; Gleave ME; Nelson CC
    Cancer Res; 2008 Aug; 68(15):6407-15. PubMed ID: 18676866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Key targets of hormone treatment of prostate cancer. Part I: the androgen receptor and steroidogenic pathways.
    Pitts WR
    BJU Int; 2009 Nov; 104(9):1304. PubMed ID: 19824968
    [No Abstract]   [Full Text] [Related]  

  • 9. The role of the androgen receptor in the development and progression of prostate cancer.
    Jenster G
    Semin Oncol; 1999 Aug; 26(4):407-21. PubMed ID: 10482183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Androgen axis in prostate cancer.
    Culig Z; Bartsch G
    J Cell Biochem; 2006 Oct; 99(2):373-81. PubMed ID: 16598769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Androgen receptor: role and novel therapeutic prospects in prostate cancer.
    Taplin ME
    Expert Rev Anticancer Ther; 2008 Sep; 8(9):1495-508. PubMed ID: 18759700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of coordinated molecular alterations in the development of androgen-independent prostate cancer: an in vitro model that corroborates clinical observations.
    Shi Y; Chatterjee SJ; Brands FH; Shi SR; Pootrakul L; Taylor CR; Datar R; Cote RJ
    BJU Int; 2006 Jan; 97(1):170-8. PubMed ID: 16336351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Expression of androgen receptor protein in hormone refractory prostate cancer].
    Zhang Y; Chen W; Hu XK; Gui ZN
    Ai Zheng; 2003 Jan; 22(1):95-7. PubMed ID: 12561446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in cholesterol regulation contribute to the production of intratumoral androgens during progression to castration-resistant prostate cancer in a mouse xenograft model.
    Leon CG; Locke JA; Adomat HH; Etinger SL; Twiddy AL; Neumann RD; Nelson CC; Guns ES; Wasan KM
    Prostate; 2010 Mar; 70(4):390-400. PubMed ID: 19866465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Androgen receptor action in hormone-dependent and recurrent prostate cancer.
    Agoulnik IU; Weigel NL
    J Cell Biochem; 2006 Oct; 99(2):362-72. PubMed ID: 16619264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer.
    Stanbrough M; Bubley GJ; Ross K; Golub TR; Rubin MA; Penning TM; Febbo PG; Balk SP
    Cancer Res; 2006 Mar; 66(5):2815-25. PubMed ID: 16510604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hormonal regulation of beta2-adrenergic receptor level in prostate cancer.
    Ramberg H; Eide T; Krobert KA; Levy FO; Dizeyi N; Bjartell AS; Abrahamsson PA; Taskén KA
    Prostate; 2008 Jul; 68(10):1133-42. PubMed ID: 18454446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lessons from in-vivo models of castration-resistant prostate cancer.
    Lin D; Gout PW; Wang Y
    Curr Opin Urol; 2013 May; 23(3):214-9. PubMed ID: 23385975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Androgen receptor: a key molecule in the progression of prostate cancer to hormone independence.
    Taplin ME; Balk SP
    J Cell Biochem; 2004 Feb; 91(3):483-90. PubMed ID: 14755679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steroid hormone receptors as targets for the therapy of breast and prostate cancer--recent advances, mechanisms of resistance, and new approaches.
    Hoffmann J; Sommer A
    J Steroid Biochem Mol Biol; 2005 Feb; 93(2-5):191-200. PubMed ID: 15860262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 103.