BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 19558651)

  • 1. Ab initio and homology based prediction of protein domains by recursive neural networks.
    Walsh I; Martin AJ; Mooney C; Rubagotti E; Vullo A; Pollastri G
    BMC Bioinformatics; 2009 Jun; 10():195. PubMed ID: 19558651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab initio and template-based prediction of multi-class distance maps by two-dimensional recursive neural networks.
    Walsh I; Baù D; Martin AJ; Mooney C; Vullo A; Pollastri G
    BMC Struct Biol; 2009 Jan; 9():5. PubMed ID: 19183478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond the Twilight Zone: automated prediction of structural properties of proteins by recursive neural networks and remote homology information.
    Mooney C; Pollastri G
    Proteins; 2009 Oct; 77(1):181-90. PubMed ID: 19422056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distill: a suite of web servers for the prediction of one-, two- and three-dimensional structural features of proteins.
    Baú D; Martin AJ; Mooney C; Vullo A; Walsh I; Pollastri G
    BMC Bioinformatics; 2006 Sep; 7():402. PubMed ID: 16953874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward an accurate prediction of inter-residue distances in proteins using 2D recursive neural networks.
    Kukic P; Mirabello C; Tradigo G; Walsh I; Veltri P; Pollastri G
    BMC Bioinformatics; 2014 Jan; 15():6. PubMed ID: 24410833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A two-stage approach for improved prediction of residue contact maps.
    Vullo A; Walsh I; Pollastri G
    BMC Bioinformatics; 2006 Mar; 7():180. PubMed ID: 16573808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate prediction of protein secondary structure and solvent accessibility by consensus combiners of sequence and structure information.
    Pollastri G; Martin AJ; Mooney C; Vullo A
    BMC Bioinformatics; 2007 Jun; 8():201. PubMed ID: 17570843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting distant-homology protein structures by aligning deep neural-network based contact maps.
    Zheng W; Wuyun Q; Li Y; Mortuza SM; Zhang C; Pearce R; Ruan J; Zhang Y
    PLoS Comput Biol; 2019 Oct; 15(10):e1007411. PubMed ID: 31622328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PSPP: a protein structure prediction pipeline for computing clusters.
    Lee MS; Bondugula R; Desai V; Zavaljevski N; Yeh IC; Wallqvist A; Reifman J
    PLoS One; 2009 Jul; 4(7):e6254. PubMed ID: 19606223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AIDA: ab initio domain assembly for automated multi-domain protein structure prediction and domain-domain interaction prediction.
    Xu D; Jaroszewski L; Li Z; Godzik A
    Bioinformatics; 2015 Jul; 31(13):2098-105. PubMed ID: 25701568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate Ab Initio and Template-Based Prediction of Short Intrinsically-Disordered Regions by Bidirectional Recurrent Neural Networks Trained on Large-Scale Datasets.
    Volpato V; Alshomrani B; Pollastri G
    Int J Mol Sci; 2015 Aug; 16(8):19868-85. PubMed ID: 26307973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep-learning contact-map guided protein structure prediction in CASP13.
    Zheng W; Li Y; Zhang C; Pearce R; Mortuza SM; Zhang Y
    Proteins; 2019 Dec; 87(12):1149-1164. PubMed ID: 31365149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving protein fold recognition by extracting fold-specific features from predicted residue-residue contacts.
    Zhu J; Zhang H; Li SC; Wang C; Kong L; Sun S; Zheng WM; Bu D
    Bioinformatics; 2017 Dec; 33(23):3749-3757. PubMed ID: 28961795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Template-based C8-SCORPION: a protein 8-state secondary structure prediction method using structural information and context-based features.
    Yaseen A; Li Y
    BMC Bioinformatics; 2014; 15 Suppl 8(Suppl 8):S3. PubMed ID: 25080939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TopDomain: Exhaustive Protein Domain Boundary Metaprediction Combining Multisource Information and Deep Learning.
    Mulnaes D; Golchin P; Koenig F; Gohlke H
    J Chem Theory Comput; 2021 Jul; 17(7):4599-4613. PubMed ID: 34161735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AutoSCOP: automated prediction of SCOP classifications using unique pattern-class mappings.
    Gewehr JE; Hintermair V; Zimmer R
    Bioinformatics; 2007 May; 23(10):1203-10. PubMed ID: 17379694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FFAS-3D: improving fold recognition by including optimized structural features and template re-ranking.
    Xu D; Jaroszewski L; Li Z; Godzik A
    Bioinformatics; 2014 Mar; 30(5):660-7. PubMed ID: 24130308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CNNcon: improved protein contact maps prediction using cascaded neural networks.
    Ding W; Xie J; Dai D; Zhang H; Xie H; Zhang W
    PLoS One; 2013; 8(4):e61533. PubMed ID: 23626696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DomHR: accurately identifying domain boundaries in proteins using a hinge region strategy.
    Zhang XY; Lu LJ; Song Q; Yang QQ; Li DP; Sun JM; Li TH; Cong PS
    PLoS One; 2013; 8(4):e60559. PubMed ID: 23593247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.