These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator. Liu D; Xiao Y; Evans BS; Zhang F ACS Synth Biol; 2015 Feb; 4(2):132-40. PubMed ID: 24377365 [TBL] [Abstract][Full Text] [Related]
3. Improving fatty acid production in Escherichia coli through the overexpression of malonyl coA-acyl carrier protein transacylase. Zhang X; Agrawal A; San KY Biotechnol Prog; 2012; 28(1):60-5. PubMed ID: 22038854 [TBL] [Abstract][Full Text] [Related]
4. Engineering a Novel Metabolic Pathway for Improving Cellular Malonyl-CoA Levels in Escherichia coli. Moteallehi-Ardakani MH; Asad S; Marashi SA; Moghaddasi A; Zarparvar P Mol Biotechnol; 2023 Sep; 65(9):1508-1517. PubMed ID: 36658293 [TBL] [Abstract][Full Text] [Related]
5. Engineering intracellular malonyl-CoA availability in microbial hosts and its impact on polyketide and fatty acid synthesis. Milke L; Marienhagen J Appl Microbiol Biotechnol; 2020 Jul; 104(14):6057-6065. PubMed ID: 32385515 [TBL] [Abstract][Full Text] [Related]
6. Improved phloroglucinol production by metabolically engineered Escherichia coli. Cao Y; Jiang X; Zhang R; Xian M Appl Microbiol Biotechnol; 2011 Sep; 91(6):1545-52. PubMed ID: 21643705 [TBL] [Abstract][Full Text] [Related]
7. Increasing fatty acid production in E. coli by simulating the lipid accumulation of oleaginous microorganisms. Meng X; Yang J; Cao Y; Li L; Jiang X; Xu X; Liu W; Xian M; Zhang Y J Ind Microbiol Biotechnol; 2011 Aug; 38(8):919-25. PubMed ID: 20972897 [TBL] [Abstract][Full Text] [Related]
8. Biosensor-aided high-throughput screening of hyper-producing cells for malonyl-CoA-derived products. Li H; Chen W; Jin R; Jin JM; Tang SY Microb Cell Fact; 2017 Nov; 16(1):187. PubMed ID: 29096626 [TBL] [Abstract][Full Text] [Related]
9. Improved pinocembrin production in Escherichia coli by engineering fatty acid synthesis. Cao W; Ma W; Zhang B; Wang X; Chen K; Li Y; Ouyang P J Ind Microbiol Biotechnol; 2016 Apr; 43(4):557-66. PubMed ID: 26733394 [TBL] [Abstract][Full Text] [Related]
10. Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Leonard E; Lim KH; Saw PN; Koffas MA Appl Environ Microbiol; 2007 Jun; 73(12):3877-86. PubMed ID: 17468269 [TBL] [Abstract][Full Text] [Related]
11. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Xu P; Li L; Zhang F; Stephanopoulos G; Koffas M Proc Natl Acad Sci U S A; 2014 Aug; 111(31):11299-304. PubMed ID: 25049420 [TBL] [Abstract][Full Text] [Related]
12. Enhanced production of 3-hydroxypropionic acid from glucose via malonyl-CoA pathway by engineered Escherichia coli. Cheng Z; Jiang J; Wu H; Li Z; Ye Q Bioresour Technol; 2016 Jan; 200():897-904. PubMed ID: 26606325 [TBL] [Abstract][Full Text] [Related]
13. Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Xu P; Ranganathan S; Fowler ZL; Maranas CD; Koffas MA Metab Eng; 2011 Sep; 13(5):578-87. PubMed ID: 21763447 [TBL] [Abstract][Full Text] [Related]
14. Modular pathway engineering for resveratrol and piceatannol production in engineered Escherichia coli. Shrestha A; Pandey RP; Pokhrel AR; Dhakal D; Chu LL; Sohng JK Appl Microbiol Biotechnol; 2018 Nov; 102(22):9691-9706. PubMed ID: 30178203 [TBL] [Abstract][Full Text] [Related]
15. Magnesium starvation improves production of malonyl-CoA-derived metabolites in Escherichia coli. Tokuyama K; Toya Y; Matsuda F; Cress BF; Koffas MAG; Shimizu H Metab Eng; 2019 Mar; 52():215-223. PubMed ID: 30529031 [TBL] [Abstract][Full Text] [Related]
16. Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli. Wu J; Du G; Chen J; Zhou J Sci Rep; 2015 Sep; 5():13477. PubMed ID: 26323217 [TBL] [Abstract][Full Text] [Related]
17. Characterizing the effect of expression of an acetyl-CoA synthetase insensitive to acetylation on co-utilization of glucose and acetate in batch and continuous cultures of E. coli W. Novak K; Flöckner L; Erian AM; Freitag P; Herwig C; Pflügl S Microb Cell Fact; 2018 Jul; 17(1):109. PubMed ID: 29986728 [TBL] [Abstract][Full Text] [Related]
18. Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. Rathnasingh C; Raj SM; Lee Y; Catherine C; Ashok S; Park S J Biotechnol; 2012 Feb; 157(4):633-40. PubMed ID: 21723339 [TBL] [Abstract][Full Text] [Related]
19. Directed evolution of phloroglucinol synthase PhlD with increased stability for phloroglucinol production. Rao G; Lee JK; Zhao H Appl Microbiol Biotechnol; 2013 Jul; 97(13):5861-7. PubMed ID: 23358999 [TBL] [Abstract][Full Text] [Related]
20. Development of a Genetically Encoded Biosensor for Detection of Polyketide Synthase Extender Units in Escherichia coli. Kalkreuter E; Keeler AM; Malico AA; Bingham KS; Gayen AK; Williams GJ ACS Synth Biol; 2019 Jun; 8(6):1391-1400. PubMed ID: 31134799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]