These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 19559065)

  • 1. Derivation of the minimal magnitude of the Critical Effect Size for continuous toxicological parameters from within-animal variation in control group data.
    Buist HE; von Bölcsházy GF; Dammann M; Telman J; Rennen MA
    Regul Toxicol Pharmacol; 2009 Nov; 55(2):139-50. PubMed ID: 19559065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Within-animal variation as an indication of the minimal magnitude of the critical effect size for continuous toxicological parameters applicable in the benchmark dose approach.
    Dekkers S; Telman J; Rennen MA; Appel MJ; de Heer C
    Risk Anal; 2006 Aug; 26(4):867-80. PubMed ID: 16948682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The minipig in toxicology.
    Svendsen O
    Exp Toxicol Pathol; 2006 Jul; 57(5-6):335-9. PubMed ID: 16725317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical chemistry and haematology historical data in control Sprague-Dawley rats from pre-clinical toxicity studies.
    Petterino C; Argentino-Storino A
    Exp Toxicol Pathol; 2006 Jan; 57(3):213-9. PubMed ID: 16343876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Choice of method for statistical analysis of quantitative data obtained from toxicological studies--toxicological data].
    Kobayashi K; Ohori K; Kobayashi M; Takeuchi H
    Sangyo Eiseigaku Zasshi; 1997 May; 39(3):86-92. PubMed ID: 9211592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retrospective analysis of relative parameter sensitivity in multi-generation reproductive toxicity studies.
    Dang ZC; Rorije E; Esch TH; Muller A; Hakkert BC; Piersma AH
    Reprod Toxicol; 2009 Sep; 28(2):196-202. PubMed ID: 19393313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benefits of combining the sexes when evaluating data from toxicological studies.
    Wiklund SJ; Svens K; Palm M; Holland T
    J Appl Toxicol; 2005; 25(2):135-42. PubMed ID: 15744762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The variation in slope of concentration-effect relationships.
    Smit MG; Hendriks AJ; Schobben JH; Karman CC; Schobben HP
    Ecotoxicol Environ Saf; 2001 Jan; 48(1):43-50. PubMed ID: 11161676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Individual reference intervals of hematological and serum biochemical parameters in cynomolgus monkeys.
    Koga T; Kanefuji K; Nakama K
    Int J Toxicol; 2005; 24(5):377-85. PubMed ID: 16257857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinguishing animal subsets in toxicokinetic studies: comparison of non-linear mixed effects modelling with non-compartmental methods.
    Hing JP; Woolfrey SG; Greenslade D; Wright PM
    J Appl Toxicol; 2002; 22(6):437-43. PubMed ID: 12424748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sub-chronic (13 weeks) oral toxicity study in rats and an in vitro genotoxicity study with Korean pine nut oil (PinnoThin TG).
    Speijers GJ; Dederen LH; Keizer H
    Regul Toxicol Pharmacol; 2009 Nov; 55(2):158-65. PubMed ID: 19559745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinal electrophysiology for toxicology studies: applications and limits of ERG in animals and ex vivo recordings.
    Rosolen SG; Kolomiets B; Varela O; Picaud S
    Exp Toxicol Pathol; 2008 Jun; 60(1):17-32. PubMed ID: 18294830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. To mate or not to mate: a retrospective analysis of two-generation studies for evaluation of criteria to trigger additional mating in the extended one-generation design.
    Beekhuijzen M; Zmarowski A; Emmen H; Frieling W
    Reprod Toxicol; 2009 Sep; 28(2):203-8. PubMed ID: 19426798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upper susceptibility threshold limits with confidence intervals: a method to identify normal and abnormal population values for laboratory toxicological parameters, based on acetylcholinesterase activities in sea lice.
    Fallang A; Larsen S; Horsberg TE
    Pest Manag Sci; 2006 Mar; 62(3):208-13. PubMed ID: 16475215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal malformations and variations in developmental toxicity studies: interpretation issues for human risk assessment.
    Daston GP; Seed J
    Birth Defects Res B Dev Reprod Toxicol; 2007 Dec; 80(6):421-4. PubMed ID: 18157902
    [No Abstract]   [Full Text] [Related]  

  • 16. Use of mixed-effect models and tolerance limits to evaluate control cynomolgus monkey body weight change and variability during preclinical toxicology studies.
    Yeager RL; Zhao D; Lan Y; Poage D; Lin CT; Duvall MD
    Regul Toxicol Pharmacol; 2011 Jun; 60(1):40-5. PubMed ID: 21315130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurotoxicity test validation, positive controls and proficiency: are chemicals necessary?
    Maurissen JP; Marable BR
    Neurotoxicol Teratol; 2005; 27(4):545-51. PubMed ID: 16026966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Replacing the no-effect level (NOEL) with bounded effect levels (OBEL and LEBEL).
    Hansson SO
    Stat Med; 2002 Oct; 21(20):3071-8. PubMed ID: 12369082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 13-week sub-chronic dietary toxicity study of a cruciferin-rich canola protein isolate in rats.
    Mejia LA; Korgaonkar CK; Schweizer M; Chengelis C; Marit G; Ziemer E; Grabiel R; Empie M
    Food Chem Toxicol; 2009 Oct; 47(10):2645-54. PubMed ID: 19647778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preclinical testing on insects predicts human haematotoxic potentials.
    Berger J
    Lab Anim; 2009 Oct; 43(4):328-32. PubMed ID: 19505933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.