These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
553 related articles for article (PubMed ID: 19559448)
1. The partitioning of Triclosan between aqueous and particulate bound phases in the Hudson River Estuary. Wilson B; Chen RF; Cantwell M; Gontz A; Zhu J; Olsen CR Mar Pollut Bull; 2009; 59(4-7):207-12. PubMed ID: 19559448 [TBL] [Abstract][Full Text] [Related]
2. Mass loadings of triclosan and triclocarbon from four wastewater treatment plants to three rivers and landfill in Savannah, Georgia, USA. Kumar KS; Priya SM; Peck AM; Sajwan KS Arch Environ Contam Toxicol; 2010 Feb; 58(2):275-85. PubMed ID: 19756845 [TBL] [Abstract][Full Text] [Related]
3. Short-term dynamics and retention of triclosan in the lower Hudson River Estuary. Wilson B; Zhu J; Cantwell M; Olsen CR Mar Pollut Bull; 2008 Jun; 56(6):1230-3. PubMed ID: 18455196 [No Abstract] [Full Text] [Related]
4. Triclosan in waste and surface waters from the upper Detroit River by liquid chromatography-electrospray-tandem quadrupole mass spectrometry. Hua W; Bennett ER; Letcher RJ Environ Int; 2005 Jul; 31(5):621-30. PubMed ID: 15910958 [TBL] [Abstract][Full Text] [Related]
5. The distribution of triclosan and methyl-triclosan in marine sediments of Barker Inlet, South Australia. Fernandes M; Shareef A; Kookana R; Gaylard S; Hoare S; Kildea T J Environ Monit; 2011 Apr; 13(4):801-6. PubMed ID: 21229144 [TBL] [Abstract][Full Text] [Related]
6. The occurrence of chloramphenicol and tetracyclines in municipal sewage and the Nanming River, Guiyang City, China. Liu H; Zhang G; Liu CQ; Li L; Xiang M J Environ Monit; 2009 Jun; 11(6):1199-205. PubMed ID: 19513451 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of triclosan and triclocarban at river basin scale using monitoring and modeling tools: implications for controlling of urban domestic sewage discharge. Zhao JL; Zhang QQ; Chen F; Wang L; Ying GG; Liu YS; Yang B; Zhou LJ; Liu S; Su HC; Zhang RQ Water Res; 2013 Jan; 47(1):395-405. PubMed ID: 23127624 [TBL] [Abstract][Full Text] [Related]
8. Triclosan in a sewage treatment process--balances and monitoring data. Bester K Water Res; 2003 Sep; 37(16):3891-6. PubMed ID: 12909107 [TBL] [Abstract][Full Text] [Related]
9. Factors regulating the accumulation and spatial distribution of the emerging contaminant triclosan in the sediments of an urbanized estuary: Greenwich Bay, Rhode Island, USA. Katz DR; Cantwell MG; Sullivan JC; Perron MM; Burgess RM; Ho KT; Charpentier MA Sci Total Environ; 2013 Jan; 443():123-33. PubMed ID: 23183224 [TBL] [Abstract][Full Text] [Related]
10. Spatio-temporal evaluation of emerging contaminants and their partitioning along a Brazilian watershed. de Sousa DNR; Mozeto AA; Carneiro RL; Fadini PS Environ Sci Pollut Res Int; 2018 Feb; 25(5):4607-4620. PubMed ID: 29192401 [TBL] [Abstract][Full Text] [Related]
11. Triclosan in wastewaters and biosolids from Australian wastewater treatment plants. Ying GG; Kookana RS Environ Int; 2007 Feb; 33(2):199-205. PubMed ID: 17055058 [TBL] [Abstract][Full Text] [Related]
12. Fate of triclosan and triclosan-methyl in sewage treatment plants and surface waters. Bester K Arch Environ Contam Toxicol; 2005 Jul; 49(1):9-17. PubMed ID: 15959704 [TBL] [Abstract][Full Text] [Related]
13. Occurrence and distribution of triclosan in the German Bight (North Sea). Xie Z; Ebinghaus R; Flöser G; Caba A; Ruck W Environ Pollut; 2008 Dec; 156(3):1190-5. PubMed ID: 18490092 [TBL] [Abstract][Full Text] [Related]
14. Environmental fate of Triclosan in the River Aire Basin, UK. Sabaliunas D; Webb SF; Hauk A; Jacob M; Eckhoff WS Water Res; 2003 Jul; 37(13):3145-54. PubMed ID: 14509701 [TBL] [Abstract][Full Text] [Related]
15. Monitoring of selected estrogenic compounds and estrogenic activity in surface water and sediment of the Yellow River in China using combined chemical and biological tools. Wang L; Ying GG; Chen F; Zhang LJ; Zhao JL; Lai HJ; Chen ZF; Tao R Environ Pollut; 2012 Jun; 165():241-9. PubMed ID: 22015335 [TBL] [Abstract][Full Text] [Related]
16. Mercury speciation in the Valdeazogues River-La Serena Reservoir system: influence of Almadén (Spain) historic mining activities. Berzas Nevado JJ; Rodríguez Martín-Doimeadios RC; Moreno MJ Sci Total Environ; 2009 Mar; 407(7):2372-82. PubMed ID: 19167027 [TBL] [Abstract][Full Text] [Related]
17. GC-MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian rivers. Ramaswamy BR; Shanmugam G; Velu G; Rengarajan B; Larsson DG J Hazard Mater; 2011 Feb; 186(2-3):1586-93. PubMed ID: 21216531 [TBL] [Abstract][Full Text] [Related]
18. Decadal mercury trends in San Francisco Estuary sediments. Conaway CH; Ross JR; Looker R; Mason RP; Flegal AR Environ Res; 2007 Sep; 105(1):53-66. PubMed ID: 17161835 [TBL] [Abstract][Full Text] [Related]
19. Occurrence and distribution of chlorobenzenes in the Tonghui river of Beijing, China. Zhou X; Deng S; Huang J; Yu G; Lv H Arch Environ Contam Toxicol; 2009 Jul; 57(1):32-41. PubMed ID: 18825445 [TBL] [Abstract][Full Text] [Related]
20. A field study of triclosan loss rates in river water (Cibolo Creek, TX). Morrall D; McAvoy D; Schatowitz B; Inauen J; Jacob M; Hauk A; Eckhoff W Chemosphere; 2004 Feb; 54(5):653-60. PubMed ID: 14599511 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]