BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 19559680)

  • 1. Vestibular afferents to the motoneurons of glossopharyngeal and vagus nerves in the frog, Rana esculenta.
    Deák A; Bácskai T; Veress G; Matesz C
    Brain Res; 2009 Aug; 1286():60-5. PubMed ID: 19559680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Termination of trigeminal primary afferents on glossopharyngeal-vagal motoneurons: possible neural networks underlying the swallowing phase and visceromotor responses of prey-catching behavior.
    Kecskes S; Matesz C; Birinyi A
    Brain Res Bull; 2013 Oct; 99():109-16. PubMed ID: 24076270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The motor column and sensory projections of the branchial cranial nerves in the frog.
    Matesz C; Székely G
    J Comp Neurol; 1978 Mar; 178(1):157-76. PubMed ID: 75892
    [No Abstract]   [Full Text] [Related]  

  • 4. Vestibulotrigeminal pathways in the frog, Rana esculenta.
    Matesz C; Kovalecz G; Veress G; Deák A; Rácz E; Bácskai T
    Brain Res Bull; 2008 Mar; 75(2-4):371-4. PubMed ID: 18331900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and localization of the motor nuclei and sensory projections of the glossopharyngeal, vagus, and hypoglossal nerves of the cockatoo (Cacatua roseicapilla), Cacatuidae.
    Wild JM
    J Comp Neurol; 1981 Dec; 203(3):351-77. PubMed ID: 6274918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possible neural network mediating jaw opening during prey-catching behavior of the frog.
    Kovalecz G; Kecskes S; Birinyi A; Matesz C
    Brain Res Bull; 2015 Oct; 119(Pt A):19-24. PubMed ID: 26444079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin and identification of fibers in the cranial nerve IX-X complex of Xenopus laevis: Lucifer Yellow backfills in vitro.
    Simpson HB; Tobias ML; Kelley DB
    J Comp Neurol; 1986 Feb; 244(4):430-44. PubMed ID: 3958236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Functional anatomy of the glossopharyngeal, vagus, accessory and hypoglossal cranial nerves].
    Simon E; Mertens P
    Neurochirurgie; 2009 Apr; 55(2):132-5. PubMed ID: 19304301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural circuits underlying tongue movements for the prey-catching behavior in frog: distribution of primary afferent terminals on motoneurons supplying the tongue.
    Kecskes S; Matesz C; Gaál B; Birinyi A
    Brain Struct Funct; 2016 Apr; 221(3):1533-53. PubMed ID: 25575900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The sites of origin and termination of afferent and efferent components in the lingual and pharyngeal branches of the glossopharyngeal nerve in the Japanese monkey (Macaca fuscata).
    Satoda T; Takahashi O; Murakami C; Uchida T; Mizuno N
    Neurosci Res; 1996 Mar; 24(4):385-92. PubMed ID: 8861108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organization of dye-coupled cerebellar granule cells labeled from afferent vestibular and dorsal root fibers in the frog Rana esculenta.
    Rácz E; Bácskai T; Halasi G; Kovács E; Matesz C
    J Comp Neurol; 2006 May; 496(3):382-94. PubMed ID: 16566006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sex differences in the motor nucleus of cranial nerve IX-X in Xenopus laevis: a quantitative Golgi study.
    Kelley DB; Fenstemaker S; Hannigan P; Shih S
    J Neurobiol; 1988 Jul; 19(5):413-29. PubMed ID: 3392529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visceral and orofacial somatic afferent fiber terminals converge onto the same neuron in paratrigeminal nucleus: An electron microscopic study in rats.
    Ma WL; Zhang WB; Xiong KH; Guo F
    Auton Neurosci; 2007 Jan; 131(1-2):45-9. PubMed ID: 16962830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative pattern of the primary afferent projection from the 8th,9th, and 10th cranial nerves to the accessory cuneate nucleus.
    Sobusiak T; Zimny R; Zabel J
    Anat Anz; 1972; 131(3):248-58. PubMed ID: 5074710
    [No Abstract]   [Full Text] [Related]  

  • 15. Localization of the neurons of origin of efferent fibers in the glossopharyngeal, vagus and accessory nerves in the rat by means of retrograde degeneration and horseradish peroxidase methods.
    Lü YL; Sakai H
    Okajimas Folia Anat Jpn; 1984 Oct; 61(4):287-309. PubMed ID: 6527874
    [No Abstract]   [Full Text] [Related]  

  • 16. Occipital artery injections of 5-HT may directly activate the cell bodies of vagal and glossopharyngeal afferent cell bodies in the rat.
    Lacolley P; Owen JR; Sandock K; Lewis TH; Bates JN; Robertson TP; Lewis SJ
    Neuroscience; 2006 Nov; 143(1):289-308. PubMed ID: 17029801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crossing dendrites of the hypoglossal motoneurons: possible morphological substrate of coordinated and synchronized tongue movements of the frog, Rana esculenta.
    Bácskai T; Veress G; Halasi G; Matesz C
    Brain Res; 2010 Feb; 1313():89-96. PubMed ID: 19962369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural circuits underlying jaw movements for the prey-catching behavior in frog: distribution of vestibular afferent terminals on motoneurons supplying the jaw.
    Birinyi A; Rácz N; Kecskes S; Matesz C; Kovalecz G
    Brain Struct Funct; 2018 May; 223(4):1683-1696. PubMed ID: 29189907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The localization, in the nucleus ambiguus of the rabbit, of the cells of origin of motor nerve fibers in the glossopharyngeal nerve and various branches of the vagus nerve by means of retrograde degeneration.
    Lawn AM
    J Comp Neurol; 1966 Jun; 127(2):293-306. PubMed ID: 5962688
    [No Abstract]   [Full Text] [Related]  

  • 20. Organization of the ambiguus nucleus in the frog (Rana esculenta).
    Matesz C; Székely G
    J Comp Neurol; 1996 Jul; 371(2):258-69. PubMed ID: 8835731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.