BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 19559869)

  • 21. Detection of triglyceride using an iridium nano-particle catalyst based amperometric biosensor.
    Liao WY; Liu CC; Chou TC
    Analyst; 2008 Dec; 133(12):1757-63. PubMed ID: 19082080
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibition of apple polyphenol oxidase activity by procyanidins and polyphenol oxidation products.
    Le Bourvellec C; Le Quéré JM; Sanoner P; Drilleau JF; Guyot S
    J Agric Food Chem; 2004 Jan; 52(1):122-30. PubMed ID: 14709024
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An electrochemical biosensor for alpha-fetoprotein based on carbon paste electrode constructed of room temperature ionic liquid and gold nanoparticles.
    Ding C; Zhao F; Ren R; Lin JM
    Talanta; 2009 May; 78(3):1148-54. PubMed ID: 19269485
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemometric-assisted construction of a biosensing device to measure chlorogenic acid content in brewed coffee beverages to discriminate quality.
    Salamanca-Neto CAR; Marcheafave GG; Scremin J; Barbosa ECM; Camargo PHC; Dekker RFH; Scarminio IS; Barbosa-Dekker AM; Sartori ER
    Food Chem; 2020 Jun; 315():126306. PubMed ID: 32035315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly sensitive and selective cholesterol biosensor based on direct electron transfer of hemoglobin.
    Zhao C; Wan L; Jiang L; Wang Q; Jiao K
    Anal Biochem; 2008 Dec; 383(1):25-30. PubMed ID: 18783720
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of chlorogenic acid quinone and interaction of chlorogenic acid quinone and catechins in the enzymatic browning of apple.
    Amaki K; Saito E; Taniguchi K; Joshita K; Murata M
    Biosci Biotechnol Biochem; 2011; 75(5):829-32. PubMed ID: 21597194
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A simple capillary electrophoresis with electrochemical detection method for determination of the hydrolysis rate constant of chlorogenic acid.
    Tong P; Zhang L; He Y; Chi Y; Chen G
    Talanta; 2009 Mar; 77(5):1790-4. PubMed ID: 19159800
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hybrid material based on chitosan and layered double hydroxides: characterization and application to the design of amperometric phenol biosensor.
    Han E; Shan D; Xue H; Cosnier S
    Biomacromolecules; 2007 Mar; 8(3):971-5. PubMed ID: 17253764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Facile and controllable preparation of glucose biosensor based on Prussian blue nanoparticles hybrid composites.
    Li L; Sheng Q; Zheng J; Zhang H
    Bioelectrochemistry; 2008 Nov; 74(1):170-5. PubMed ID: 18799364
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biosensor based on the biocatalysis of microperoxidase-11 in nanocomposite material of multiwalled carbon nanotubes/room temperature ionic liquid for amperometric determination of hydrogen peroxide.
    Wan J; Bi J; Du P; Zhang S
    Anal Biochem; 2009 Mar; 386(2):256-61. PubMed ID: 19166808
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formation of the thiocyanate conjugate of chlorogenic acid in coffee under acidic conditions in the presence of thiocyanate and nitrite: possible occurrence in the stomach.
    Takahama U; Tanaka M; Oniki T; Hirota S; Yamauchi R
    J Agric Food Chem; 2007 May; 55(10):4169-76. PubMed ID: 17455951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrochemically reduced graphene and iridium oxide nanoparticles for inhibition-based angiotensin-converting enzyme inhibitor detection.
    Kurbanoglu S; Rivas L; Ozkan SA; Merkoçi A
    Biosens Bioelectron; 2017 Feb; 88():122-129. PubMed ID: 27499381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel glucose biosensor based on the immobilization of glucose oxidase onto gold nanoparticles-modified Pb nanowires.
    Wang H; Wang X; Zhang X; Qin X; Zhao Z; Miao Z; Huang N; Chen Q
    Biosens Bioelectron; 2009 Sep; 25(1):142-6. PubMed ID: 19595586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Subnanomolar cyanide detection at polyphenol oxidase/clay biosensors.
    Shan D; Mousty C; Cosnier S
    Anal Chem; 2004 Jan; 76(1):178-83. PubMed ID: 14697048
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of roasting conditions in the level of chlorogenic acid content in coffee beans: correlation with coffee acidity.
    Moon JK; Yoo HS; Shibamoto T
    J Agric Food Chem; 2009 Jun; 57(12):5365-9. PubMed ID: 19530715
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies of a disposable biosensor based on the beta-cyclodextrin inclusion complex as mediator.
    Tu YF; Chen HY
    Anal Biochem; 2001 Dec; 299(1):71-7. PubMed ID: 11726186
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contribution of chlorogenic acids to the iron-reducing activity of coffee beverages.
    Moreira DP; Monteiro MC; Ribeiro-Alves M; Donangelo CM; Trugo LC
    J Agric Food Chem; 2005 Mar; 53(5):1399-402. PubMed ID: 15740013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel electrochemical sensor for the selective recognition of chlorogenic acid.
    Santos Wde J; Santhiago M; Yoshida IV; Kubota LT
    Anal Chim Acta; 2011 Jun; 695(1-2):44-50. PubMed ID: 21601028
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sulfite determination by a biosensor based on bay leaf tissue homogenate: very simple and economical method.
    Teke M; Sezgintürk MK; Dinçkaya E
    Artif Cells Blood Substit Immobil Biotechnol; 2009; 37(3):138-42. PubMed ID: 19418312
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrochemical estimation of the polyphenol index in wines using a laccase biosensor.
    Gamella M; Campuzano S; Reviejo AJ; Pingarrón JM
    J Agric Food Chem; 2006 Oct; 54(21):7960-7. PubMed ID: 17031995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.