These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 195600)

  • 1. Uptake of ATP analogs by isolated pea chloroplasts and their effect on CO2 fixation and electron transport.
    Robinson SP; Wiskich JT
    Biochim Biophys Acta; 1977 Jul; 461(1):131-40. PubMed ID: 195600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rates and properties of endogenous cyclic photophosphorylation of isolated intact chloroplasts measured by CO2 fixation in the presence of dihydroxyacetone phosphate.
    Kaiser W; Urbach W
    Biochim Biophys Acta; 1976 Jan; 423(1):91-102. PubMed ID: 1247606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrophosphate inhibition of carbon dioxide fixation in isolated pea chloroplasts by uptake in exchange for endogenous adenine nucleotides.
    Robinson SP; Wiskich JT
    Plant Physiol; 1977 Mar; 59(3):422-7. PubMed ID: 16659865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A highactivity ATP translocator in mesophyll chloroplasts of Digitaria sanguinalis, a plant having the C-4 dicarboxylic acid pathway of photosynthesis.
    Huber SC; Edwards GE
    Biochim Biophys Acta; 1976 Sep; 440(3):675-87. PubMed ID: 963046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on photophosphorylation utilizing methylene diphosphonate analogs of ADP and ATP.
    Horak A; Zalik S
    Biochim Biophys Acta; 1976 Apr; 430(1):135-44. PubMed ID: 130936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexibility of coupling and stoichiometry of ATP formation in intact chloroplasts.
    Heber U; Kirk MR
    Biochim Biophys Acta; 1975 Jan; 376(1):136-50. PubMed ID: 164902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulation of carbon dioxide fixation in isolated pea chloroplasts by catalytic amounts of adenine nucleotides.
    Robinson SP; Wiskich JT
    Plant Physiol; 1976 Aug; 58(2):156-62. PubMed ID: 16659638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen requirement of photosynthetic CO2 assimilation.
    Ziem-Hanck U; Heber U
    Biochim Biophys Acta; 1980 Jul; 591(2):266-74. PubMed ID: 6772210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy-dependent exchange of adenine nucleotides on chloroplast coupling factor (CF1).
    Strotmann H; Bickel-Sandkötter S
    Biochim Biophys Acta; 1977 Apr; 460(1):126-35. PubMed ID: 856262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adenine nucleotide translocase-dependent anion transport in pea chloroplasts.
    Woldegiorgis G; Voss S; Shrago E; Werner-Washburne M; Keegstra K
    Biochim Biophys Acta; 1985 Dec; 810(3):340-5. PubMed ID: 2998460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of oxygen by the electron transport chain of chloroplasts during assimilation of carbon dioxide.
    Egneus H; Heber U; Matthiesen U; Kirk M
    Biochim Biophys Acta; 1975 Dec; 408(3):252-68. PubMed ID: 1191661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photosynthesis by isolated chloroplasts. Inhibition by DL-glyceraldehyde of carbon dioxide assimilation.
    Stokes DM; Walker DA
    Biochem J; 1972 Aug; 128(5):1147-57. PubMed ID: 4643699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of dihydroxyacetone phosphate and 3-phosphoglycerate on O2 evolution and on the levels of ATP, ADP and Pi in isolated intact chloroplasts.
    Kaiser W; Urbach W
    Biochim Biophys Acta; 1977 Mar; 459(3):337-46. PubMed ID: 849430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The control of 3-phosphoglycerate reduction in isolated chloroplasts by the concentrations of ATP, ADP and 3-phosphoglycerate.
    Robinson SP; Walker DA
    Biochim Biophys Acta; 1979 Mar; 545(3):528-36. PubMed ID: 427144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of pH in the regulation of carbon fixation in the chloroplast stroma. Studies on CO2 fixation in the light and dark.
    Werdan K; Heldt HW; Milovancev M
    Biochim Biophys Acta; 1975 Aug; 396(2):276-92. PubMed ID: 239746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. p-Chloromercuriphenyl sulphonic acid as a specific inhibitor of the phosphate transporter in isolated chloroplasts.
    Robinson SP; Wiskich JT
    FEBS Lett; 1977 Jun; 78(2):203-6. PubMed ID: 195839
    [No Abstract]   [Full Text] [Related]  

  • 17. [In vivo and in vitro actions of biscarbamates on the photosynthetic activity of chloroplasts].
    Chueca A; Barón M; López-Gorgé J
    Rev Esp Fisiol; 1982; 38 Suppl():315-20. PubMed ID: 6815737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of CO2 fixation by adenosine 5'-diphosphate and the role of phosphate transport in isolated pea chloroplasts.
    Robinson SP; Wiskich JT
    Arch Biochem Biophys; 1977 Dec; 184(2):546-54. PubMed ID: 596885
    [No Abstract]   [Full Text] [Related]  

  • 19. Cyclic electron transport in isolated intact chloroplasts. Further studies with antimycin.
    Mills JD; Slovacek RE; Hind G
    Biochim Biophys Acta; 1978 Nov; 504(2):298-309. PubMed ID: 718878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tentoxin-induced binding of adenine nucleotides to soluble spinach chloroplast coupling factor 1.
    Reimer S; Selman BR
    Biochim Biophys Acta; 1979 Mar; 545(3):415-23. PubMed ID: 154928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.