BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1342 related articles for article (PubMed ID: 19560207)

  • 1. Feasibility of saccadic vector optokinetic perimetry: a method of automated static perimetry for children using eye tracking.
    Murray IC; Fleck BW; Brash HM; Macrae ME; Tan LL; Minns RA
    Ophthalmology; 2009 Oct; 116(10):2017-26. PubMed ID: 19560207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variability in patients with glaucomatous visual field damage is reduced using size V stimuli.
    Wall M; Kutzko KE; Chauhan BC
    Invest Ophthalmol Vis Sci; 1997 Feb; 38(2):426-35. PubMed ID: 9040476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of frequency-doubling technology perimetry in a population-based prevalence survey of glaucoma: the Tajimi study.
    Iwase A; Tomidokoro A; Araie M; Shirato S; Shimizu H; Kitazawa Y;
    Ophthalmology; 2007 Jan; 114(1):27-32. PubMed ID: 17070580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity and specificity of the 76-suprathreshold visual field test to detect eyes with visual field defect by Humphrey threshold testing in a population-based setting: the Thessaloniki eye study.
    Topouzis F; Coleman AL; Yu F; Mavroudis L; Anastasopoulos E; Koskosas A; Pappas T; Dimitrakos S; Wilson MR
    Am J Ophthalmol; 2004 Mar; 137(3):420-5. PubMed ID: 15013863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated suprathreshold screening for glaucoma: the Baltimore Eye Survey.
    Katz J; Tielsch JM; Quigley HA; Javitt J; Witt K; Sommer A
    Invest Ophthalmol Vis Sci; 1993 Nov; 34(12):3271-7. PubMed ID: 8225862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The reliability of frequency-doubling technology (FDT) perimetry in a pediatric population.
    Becker K; Semes L
    Optometry; 2003 Mar; 74(3):173-9. PubMed ID: 12645850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saccadic Vector Optokinetic Perimetry (SVOP): a novel technique for automated static perimetry in children using eye tracking.
    Murray I; Perperidis A; Brash H; Cameron L; McTrusty A; Fleck B; Minns R
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3186-9. PubMed ID: 24110405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual field assessment in glaucoma: comparative evaluation of manual kinetic Goldmann perimetry and automated static perimetry.
    Agarwal HC; Gulati V; Sihota R
    Indian J Ophthalmol; 2000 Dec; 48(4):301-6. PubMed ID: 11340889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility and outcome of automated static perimetry in children using continuous light increment perimetry (CLIP) and fast threshold strategy.
    Wabbels BK; Wilscher S
    Acta Ophthalmol Scand; 2005 Dec; 83(6):664-9. PubMed ID: 16396642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of an effective visual field testing strategy for a normal pediatric population.
    Akar Y; Yilmaz A; Yucel I
    Ophthalmologica; 2008; 222(5):329-33. PubMed ID: 18617757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fundus perimetry with the Micro Perimeter 1 in normal individuals: comparison with conventional threshold perimetry.
    Springer C; Bültmann S; Völcker HE; Rohrschneider K
    Ophthalmology; 2005 May; 112(5):848-54. PubMed ID: 15878065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation of the binocular visual field with patient assessment of vision.
    Jampel HD; Friedman DS; Quigley H; Miller R
    Invest Ophthalmol Vis Sci; 2002 Apr; 43(4):1059-67. PubMed ID: 11923247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual field recovery after vision restoration therapy (VRT) is independent of eye movements: an eye tracker study.
    Kasten E; Bunzenthal U; Sabel BA
    Behav Brain Res; 2006 Nov; 175(1):18-26. PubMed ID: 16970999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Component perimetry: a fast method to detect visual field defects caused by brain lesions.
    Bachmann G; Fahle M
    Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):2870-86. PubMed ID: 10967040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison between semiautomated kinetic perimetry and conventional Goldmann manual kinetic perimetry in advanced visual field loss.
    Nowomiejska K; Vonthein R; Paetzold J; Zagorski Z; Kardon R; Schiefer U
    Ophthalmology; 2005 Aug; 112(8):1343-54. PubMed ID: 15996734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Vigabatrin and visual field defects. A Danish material with evaluation of different screening methods].
    Riise P; Fledelius HC; Rogvi-Hansen Bà
    Ugeskr Laeger; 2003 Mar; 165(10):1034-8. PubMed ID: 12645411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diagnostic sensitivity of fast blue-yellow and standard automated perimetry in early glaucoma: a comparison between different test programs.
    Bengtsson B; Heijl A
    Ophthalmology; 2006 Jul; 113(7):1092-7. PubMed ID: 16815399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Swedish interactive thresholding algorithm fast for following visual fields in prepubertal idiopathic intracranial hypertension.
    Stiebel-Kalish H; Lusky M; Yassur Y; Kalish Y; Shuper A; Erlich R; Lubman S; Snir M
    Ophthalmology; 2004 Sep; 111(9):1673-5. PubMed ID: 15350321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perimetry while moving the eyes: implications for the variability of visual field defects.
    Toepfer A; Kasten E; Guenther T; Sabel BA
    J Neuroophthalmol; 2008 Dec; 28(4):308-19. PubMed ID: 19145132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [A comparative analysis of standard automated perimetry and short wavelength automated perimetry in early diagnosis of glaucoma].
    Chiseliţă D; Crenguţa MI; Danielescu C; Mihaela NM
    Oftalmologia; 2006; 50(2):94-102. PubMed ID: 16927766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 68.