BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 19560228)

  • 1. Complex human chromosomal and genomic rearrangements.
    Zhang F; Carvalho CM; Lupski JR
    Trends Genet; 2009 Jul; 25(7):298-307. PubMed ID: 19560228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans.
    Zhang F; Khajavi M; Connolly AM; Towne CF; Batish SD; Lupski JR
    Nat Genet; 2009 Jul; 41(7):849-53. PubMed ID: 19543269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FoSTeS, MMBIR and NAHR at the human proximal Xp region and the mechanisms of human Xq isochromosome formation.
    Koumbaris G; Hatzisevastou-Loukidou H; Alexandrou A; Ioannides M; Christodoulou C; Fitzgerald T; Rajan D; Clayton S; Kitsiou-Tzeli S; Vermeesch JR; Skordis N; Antoniou P; Kurg A; Georgiou I; Carter NP; Patsalis PC
    Hum Mol Genet; 2011 May; 20(10):1925-36. PubMed ID: 21349920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rare pathogenic microdeletions and tandem duplications are microhomology-mediated and stimulated by local genomic architecture.
    Vissers LE; Bhatt SS; Janssen IM; Xia Z; Lalani SR; Pfundt R; Derwinska K; de Vries BB; Gilissen C; Hoischen A; Nesteruk M; Wisniowiecka-Kowalnik B; Smyk M; Brunner HG; Cheung SW; van Kessel AG; Veltman JA; Stankiewicz P
    Hum Mol Genet; 2009 Oct; 18(19):3579-93. PubMed ID: 19578123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding NF1 Intragenic Copy-Number Variations.
    Hsiao MC; Piotrowski A; Callens T; Fu C; Wimmer K; Claes KB; Messiaen L
    Am J Hum Genet; 2015 Aug; 97(2):238-49. PubMed ID: 26189818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microhomology-mediated mechanisms underlie non-recurrent disease-causing microdeletions of the FOXL2 gene or its regulatory domain.
    Verdin H; D'haene B; Beysen D; Novikova Y; Menten B; Sante T; Lapunzina P; Nevado J; Carvalho CM; Lupski JR; De Baere E
    PLoS Genet; 2013; 9(3):e1003358. PubMed ID: 23516377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of structural chromosomal rearrangement formation.
    Burssed B; Zamariolli M; Bellucco FT; Melaragno MI
    Mol Cytogenet; 2022 Jun; 15(1):23. PubMed ID: 35701783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterisation of a novel aberrant pattern of intron 1 inversion with concomitant large insertion and deletion within the F8 gene.
    You G; Chi K; Lu Y; Ding Q; Dai J; Xi X; Wang H; Wang X
    Thromb Haemost; 2014 Aug; 112(2):264-70. PubMed ID: 24696066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic instability in the PARK2 locus is associated with Parkinson's disease.
    Ambroziak W; Koziorowski D; Duszyc K; Górka-Skoczylas P; Potulska-Chromik A; Sławek J; Hoffman-Zacharska D
    J Appl Genet; 2015 Nov; 56(4):451-461. PubMed ID: 25833766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inheritance of Charcot-Marie-Tooth disease 1A with rare nonrecurrent genomic rearrangement.
    Choi BO; Kim NK; Park SW; Hyun YS; Jeon HJ; Hwang JH; Chung KW
    Neurogenetics; 2011 Feb; 12(1):51-8. PubMed ID: 21193943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What have studies of genomic disorders taught us about our genome?
    Simmons AD; Carvalho CM; Lupski JR
    Methods Mol Biol; 2012; 838():1-27. PubMed ID: 22228005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders.
    Lee JA; Carvalho CM; Lupski JR
    Cell; 2007 Dec; 131(7):1235-47. PubMed ID: 18160035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes.
    Lupski JR; Stankiewicz P
    PLoS Genet; 2005 Dec; 1(6):e49. PubMed ID: 16444292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements.
    Holland AJ; Cleveland DW
    Nat Med; 2012 Nov; 18(11):1630-8. PubMed ID: 23135524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large scale copy number variation (CNV) at 14q12 is associated with the presence of genomic abnormalities in neoplasia.
    Braude I; Vukovic B; Prasad M; Marrano P; Turley S; Barber D; Zielenska M; Squire JA
    BMC Genomics; 2006 Jun; 7():138. PubMed ID: 16756668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concurrent triplication and uniparental isodisomy: evidence for microhomology-mediated break-induced replication model for genomic rearrangements.
    Sahoo T; Wang JC; Elnaggar MM; Sanchez-Lara P; Ross LP; Mahon LW; Hafezi K; Deming A; Hinman L; Bruno Y; Bartley JA; Liehr T; Anguiano A; Jones M
    Eur J Hum Genet; 2015 Jan; 23(1):61-6. PubMed ID: 24713661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete F9 Gene Deletion, Duplication, and Triplication Rearrangements: Implications for Factor IX Expression and Clinical Phenotypes.
    Ma Y; Li Y; Sun J; Liang Q; Wu R; Ding Q; Dai J
    Thromb Haemost; 2024 Apr; 124(4):374-385. PubMed ID: 38011862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microhomology-mediated break-induced replication model for the origin of human copy number variation.
    Hastings PJ; Ira G; Lupski JR
    PLoS Genet; 2009 Jan; 5(1):e1000327. PubMed ID: 19180184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microdeletion and microduplication syndromes.
    Vissers LE; Stankiewicz P
    Methods Mol Biol; 2012; 838():29-75. PubMed ID: 22228006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The consequences of structural genomic alterations in humans: genomic disorders, genomic instability and cancer.
    Colnaghi R; Carpenter G; Volker M; O'Driscoll M
    Semin Cell Dev Biol; 2011 Oct; 22(8):875-85. PubMed ID: 21802523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.