These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 19560340)

  • 1. Efficient metal removal and neutralization of acid mine drainage by crab-shell chitin under batch and continuous-flow conditions.
    Robinson-Lora MA; Brennan RA
    Bioresour Technol; 2009 Nov; 100(21):5063-71. PubMed ID: 19560340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum.
    McCauley CA; O'Sullivan AD; Milke MW; Weber PA; Trumm DA
    Water Res; 2009 Mar; 43(4):961-70. PubMed ID: 19070349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of crab-shell chitin for biological denitrification: batch and column tests.
    Robinson-Lora MA; Brennan RA
    Bioresour Technol; 2009 Jan; 100(2):534-41. PubMed ID: 18693014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments.
    Butler BA
    Water Res; 2009 Mar; 43(5):1392-402. PubMed ID: 19110291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of cellulose waste versus organic waste as substrate in a sulfate reducing bioreactor.
    Choudhary RP; Sheoran AS
    Bioresour Technol; 2011 Mar; 102(6):4319-24. PubMed ID: 20926292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy metals removal from acid mine drainage water using biogenic hydrogen sulphide and effluent from anaerobic treatment: effect of pH.
    Jiménez-Rodríguez AM; Durán-Barrantes MM; Borja R; Sánchez E; Colmenarejo MF; Raposo F
    J Hazard Mater; 2009 Jun; 165(1-3):759-65. PubMed ID: 19056169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treatment of zinc-rich acid mine water in low residence time bioreactors incorporating waste shells and methanol dosing.
    Mayes WM; Davis J; Silva V; Jarvis AP
    J Hazard Mater; 2011 Oct; 193():279-87. PubMed ID: 21864976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological treatment of highly contaminated acid mine drainage in batch reactors: Long-term treatment and reactive mixture characterization.
    Neculita CM; Zagury GJ
    J Hazard Mater; 2008 Sep; 157(2-3):358-66. PubMed ID: 18281152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crab shell amendments enhance the abundance and diversity of key microbial groups in sulfate-reducing columns treating acid mine drainage.
    Lin Y; Newcombe CE; Brennan RA
    Appl Microbiol Biotechnol; 2020 Oct; 104(19):8505-8516. PubMed ID: 32820375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pilot-scale passive bioreactors for the treatment of acid mine drainage: efficiency of mushroom compost vs. mixed substrates for metal removal.
    Song H; Yim GJ; Ji SW; Neculita CM; Hwang T
    J Environ Manage; 2012 Nov; 111():150-8. PubMed ID: 22892144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observed and modeled seasonal trends in dissolved and particulate Cu, Fe, Mn, and Zn in a mining-impacted stream.
    Butler BA; Ranville JF; Ross PE
    Water Res; 2008 Jun; 42(12):3135-45. PubMed ID: 18433827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laboratory evaluation of zero-valent iron to treat water impacted by acid mine drainage.
    Wilkin RT; McNeil MS
    Chemosphere; 2003 Nov; 53(7):715-25. PubMed ID: 13129511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of sulphates acidity and iron from acid mine drainage in a bench scale biochemical treatment system.
    Prasad D; Henry JG
    Environ Technol; 2009 Feb; 30(2):151-60. PubMed ID: 19278156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal and recovery of metal ions from acid mine drainage using lignite--A low cost sorbent.
    Mohan D; Chander S
    J Hazard Mater; 2006 Oct; 137(3):1545-53. PubMed ID: 16784810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: critical review and research needs.
    Neculita CM; Zagury GJ; Bussière B
    J Environ Qual; 2007; 36(1):1-16. PubMed ID: 17215207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus removal performance of acid mine drainage from wastewater.
    Ruihua L; Lin Z; Tao T; Bo L
    J Hazard Mater; 2011 Jun; 190(1-3):669-76. PubMed ID: 21514994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passive treatment of acid mine drainage with high metal concentrations using dispersed alkaline substrate.
    Rötting TS; Thomas RC; Ayora C; Carrera J
    J Environ Qual; 2008; 37(5):1741-51. PubMed ID: 18689735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lab-scale study on the application of In-Adit-Sulfate-Reducing System for AMD control.
    Ji SW; Kim SJ
    J Hazard Mater; 2008 Dec; 160(2-3):441-7. PubMed ID: 18455296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the efficiency of chitinous and ligneous substrates in metal and sulfate removal from mining-influenced water.
    Pinto PX; Al-Abed SR; McKernan J
    J Environ Manage; 2018 Dec; 227():321-328. PubMed ID: 30199728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization of fly ash to improve the quality of the acid mine drainage generated by oxidation of a sulphide-rich mining waste: column experiments.
    Pérez-López R; Nieto JM; de Almodóvar GR
    Chemosphere; 2007 Apr; 67(8):1637-46. PubMed ID: 17257643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.