BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 19560438)

  • 1. Histidine 440 controls the opening of colicin E1 channels in a lipid-dependent manner.
    Sobko AA; Rokitskaya TI; Kotova EA
    Biochim Biophys Acta; 2009 Sep; 1788(9):1962-6. PubMed ID: 19560438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a translocated gating charge in a voltage-dependent channel. Colicin E1 channels in planar phospholipid bilayer membranes.
    Abrams CK; Jakes KS; Finkelstein A; Slatin SL
    J Gen Physiol; 1991 Jul; 98(1):77-93. PubMed ID: 1719126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association.
    Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG
    Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical and photochemical modification of colicin E1 and gramicidin A in bilayer lipid membranes.
    Sobko AA; Vigasina MA; Rokitskaya TI; Kotova EA; Zakharov SD; Cramer WA; Antonenko YN
    J Membr Biol; 2004 May; 199(1):51-62. PubMed ID: 15366423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of ion channels by colicin B in planar lipid bilayers.
    Bullock JO; Armstrong SK; Shear JL; Lies DP; McIntosh MA
    J Membr Biol; 1990 Mar; 114(1):79-95. PubMed ID: 1690810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of anionic lipid and ion concentrations on the topology and segmental mobility of colicin Ia channel domain from solid-state NMR.
    Yao XL; Hong M
    Biochemistry; 2006 Jan; 45(1):289-95. PubMed ID: 16388605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colicin N forms voltage- and pH-dependent channels in planar lipid bilayer membranes.
    Wilmsen HU; Pugsley AP; Pattus F
    Eur Biophys J; 1990; 18(3):149-58. PubMed ID: 1694123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-specific biotinylation of colicin Ia. A probe for protein conformation in the membrane.
    Qiu XQ; Jakes KS; Finkelstein A; Slatin SL
    J Biol Chem; 1994 Mar; 269(10):7483-8. PubMed ID: 8125966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A very short peptide makes a voltage-dependent ion channel: the critical length of the channel domain of colicin E1.
    Liu QR; Crozel V; Levinthal F; Slatin S; Finkelstein A; Levinthal C
    Proteins; 1986 Nov; 1(3):218-29. PubMed ID: 2453053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of lipids with different spontaneous curvature on the channel activity of colicin E1: evidence in favor of a toroidal pore.
    Sobko AA; Kotova EA; Antonenko YN; Zakharov SD; Cramer WA
    FEBS Lett; 2004 Oct; 576(1-2):205-10. PubMed ID: 15474038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane binding of the colicin E1 channel: activity requires an electrostatic interaction of intermediate magnitude.
    Zakharov SD; Heymann JB; Zhang YL; Cramer WA
    Biophys J; 1996 Jun; 70(6):2774-83. PubMed ID: 8744315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid-mediated inactivation of colicin E1 channels by calcium ions.
    Sobko AA; Kotova EA; Zakharov SD; Cramer WA; Antonenko YN
    Biochemistry (Mosc); 2006 Jan; 71(1):99-103. PubMed ID: 16457626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane.
    Rajapaksha SP; Pal N; Zheng D; Lu HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):052719. PubMed ID: 26651735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo and in vitro studies of the inhibition of the channel activity of colicins by gadolinium.
    Bonhivers M; Guihard G; Pattus F; Letellier L
    Eur J Biochem; 1995 Apr; 229(1):155-63. PubMed ID: 7538071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gating movements of colicin A and colicin Ia are different.
    Slatin SL; Duché D; Kienker PK; Baty D
    J Membr Biol; 2004 Nov; 202(2):73-83. PubMed ID: 15702371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-directed mutagenesis of the charged residues near the carboxy terminus of the colicin E1 ion channel.
    Shiver JW; Cohen FS; Merrill AR; Cramer WA
    Biochemistry; 1988 Nov; 27(22):8421-8. PubMed ID: 2468358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers.
    Kim Y; Valentine K; Opella SJ; Schendel SL; Cramer WA
    Protein Sci; 1998 Feb; 7(2):342-8. PubMed ID: 9521110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the macroscopic and single channel conductance properties of colicin E1 and its COOH-terminal tryptic peptide.
    Bullock JO; Cohen FS; Dankert JR; Cramer WA
    J Biol Chem; 1983 Aug; 258(16):9908-12. PubMed ID: 6309789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gating processes of channels induced by colicin A, its C-terminal fragment and colicin E1 in planar lipid bilayers.
    Collarini M; Amblard G; Lazdunski C; Pattus F
    Eur Biophys J; 1987; 14(3):147-53. PubMed ID: 3830093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical modification of the two histidine and single cysteine residues in the channel-forming domain of colicin E1.
    Bishop LJ; Cohen FS; Davidson VL; Cramer WA
    J Membr Biol; 1986; 92(3):237-45. PubMed ID: 2431147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.