BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 19560792)

  • 1. The biosynthetic pathway of crucifer phytoalexins and phytoanticipins: de novo incorporation of deuterated tryptophans and quasi-natural compounds.
    Pedras MSC; Okinyo-Owiti DP; Thoms K; Adio AM
    Phytochemistry; 2009 Jun; 70(9):1129-1138. PubMed ID: 19560792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remarkable incorporation of the first sulfur containing indole derivative: another piece in the biosynthetic puzzle of crucifer phytoalexins.
    Pedras MS; Okinyo DP
    Org Biomol Chem; 2008 Jan; 6(1):51-4. PubMed ID: 18075646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembling the biosynthetic puzzle of crucifer metabolites: indole-3-acetaldoxime is incorporated efficiently into phytoalexins but glucobrassicin is not.
    Pedras MS; Montaut S; Xu Y; Khan AQ; Loukaci A
    Chem Commun (Camb); 2001 Sep; (17):1572-3. PubMed ID: 12240387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic changes in roots of the oilseed canola infected with the biotroph Plasmodiophora brassicae: phytoalexins and phytoanticipins.
    Pedras MS; Zheng QA; Strelkov S
    J Agric Food Chem; 2008 Nov; 56(21):9949-61. PubMed ID: 18834132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoalexins from the crucifer rutabaga: structures, syntheses, biosyntheses, and antifungal activity.
    Pedras MS; Montaut S; Suchy M
    J Org Chem; 2004 Jun; 69(13):4471-6. PubMed ID: 15202903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoalexins and phytoanticipins from the wild crucifers Thellungiella halophila and Arabidopsis thaliana: rapalexin A, wasalexins and camalexin.
    Pedras MS; Adio AM
    Phytochemistry; 2008 Feb; 69(4):889-93. PubMed ID: 18078965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unveiling the phytoalexin biosynthetic puzzle in salt cress: unprecedented incorporation of glucobrassicin into wasalexins A and B.
    Pedras MS; Yaya EE; Hossain S
    Org Biomol Chem; 2010 Nov; 8(22):5150-8. PubMed ID: 20848032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical defenses of crucifers: elicitation and metabolism of phytoalexins and indole-3-acetonitrile in brown mustard and turnip.
    Pedras MS; Nycholat CM; Montaut S; Xu Y; Khan AQ
    Phytochemistry; 2002 Mar; 59(6):611-25. PubMed ID: 11867093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoalexins of the crucifer Barbarea vulgaris: Structural profile and correlation with glucosinolate turnover.
    Cárdenas PD; Landtved JP; Larsen SH; Lindegaard N; Wøhlk S; Jensen KR; Pattison DI; Burow M; Bak S; Crocoll C; Agerbirk N
    Phytochemistry; 2023 Sep; 213():113742. PubMed ID: 37269935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. En route to erucalexin: a unique rearrangement in the crucifer phytoalexin biosynthetic pathway.
    Pedras MS; Okinyo DP
    Chem Commun (Camb); 2006 May; (17):1848-50. PubMed ID: 16622504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tenualexin, other phytoalexins and indole glucosinolates from wild cruciferous species.
    Pedras MS; Yaya EE
    Chem Biodivers; 2014 Jun; 11(6):910-8. PubMed ID: 24934676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of cabbage phytoalexins from indole glucosinolate.
    Klein AP; Sattely ES
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):1910-1915. PubMed ID: 28154137
    [No Abstract]   [Full Text] [Related]  

  • 13. The role of cytochrome P450 enzymes in the biosynthesis of camalexin.
    Glawischnig E
    Biochem Soc Trans; 2006 Dec; 34(Pt 6):1206-8. PubMed ID: 17073786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The first isocyanide of plant origin expands functional group diversity in cruciferous phytoalexins: synthesis, structure and bioactivity of isocyalexin A.
    Pedras MS; Yaya EE
    Org Biomol Chem; 2012 May; 10(18):3613-6. PubMed ID: 22495624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoalexins and polar metabolites from the oilseeds canola and rapeseed: differential metabolic responses to the biotroph Albugo candida and to abiotic stress.
    Pedras MS; Zheng QA; Gadagi RS; Rimmer SR
    Phytochemistry; 2008 Feb; 69(4):894-910. PubMed ID: 18039546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of stable isotope-labeled nasturlexins and potential precursors to probe biosynthetic pathways of cruciferous phytoalexins.
    Pedras MSC; To QH
    J Labelled Comp Radiopharm; 2018 Feb; 61(2):94-106. PubMed ID: 29231250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, synthesis, and evaluation of potential inhibitors of brassinin glucosyltransferase, a phytoalexin detoxifying enzyme from Sclerotinia sclerotiorum.
    Pedras MS; Hossain M
    Bioorg Med Chem; 2007 Sep; 15(17):5981-96. PubMed ID: 17590338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tryptophan-derived sulfur-containing phytoalexins--a general overview.
    Ruszkowska J; Wróbel JT
    Adv Exp Med Biol; 2003; 527():629-36. PubMed ID: 15206782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissecting metabolic puzzles through isotope feeding: a novel amino acid in the biosynthetic pathway of the cruciferous phytoalexins rapalexin A and isocyalexin A.
    Pedras MS; Yaya EE
    Org Biomol Chem; 2013 Feb; 11(7):1149-66. PubMed ID: 23306875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotransformation of rutabaga phytoalexins by the fungus Alternaria brassicicola: Unveiling the first hybrid metabolite derived from a phytoalexin and a fungal polyketide.
    Pedras MS; Abdoli A
    Bioorg Med Chem; 2017 Jan; 25(2):557-567. PubMed ID: 27884513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.