BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 195610)

  • 1. Decreased iodination of the red cell surface following phospholipase C treatment.
    Reichstein E; Blostein R
    Biochim Biophys Acta; 1977 Aug; 468(3):502-6. PubMed ID: 195610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of phospholipase c to detect structural changes in the membranes of human erythrocytes aged by storage.
    Shukla SD; Coleman R; Finean JB; Michell RH
    Biochim Biophys Acta; 1978 Sep; 512(2):341-9. PubMed ID: 213113
    [No Abstract]   [Full Text] [Related]  

  • 3. Modulation of the organization of erythrocyte membrane phospholipids by cytoplasmic ATP. The susceptibility of isoionic human erythrocytes ghosts to attack by detergents and phospholipase C.
    Shukla SD; Billah MM; Coleman R; Finean JB; Michell RH
    Biochim Biophys Acta; 1978 May; 509(1):48-57. PubMed ID: 647008
    [No Abstract]   [Full Text] [Related]  

  • 4. Asymmetric manipulation of the membrane lipid bilayer of intact human erythrocytes with phospholipase A, C, or D induces a change in cell shape.
    Fujii T; Tamura A
    J Biochem; 1979 Nov; 86(5):1345-52. PubMed ID: 521437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in the pattern of attack of acidic, neutral, and basic phospholipase A2 of A. halys blomhofii on human erythrocyte membranes: problems in interpretation of phospholipid location.
    Shukla SD; Hanahan DJ
    Arch Biochem Biophys; 1981 Jul; 209(2):668-76. PubMed ID: 7294816
    [No Abstract]   [Full Text] [Related]  

  • 6. Increase in osmotic fragility of bovine erythrocytes induced by bacterial phospholipases C.
    Taguchi R; Mizuno M; Inoue M; Ikezawa H
    J Biochem; 1983 Feb; 93(2):403-12. PubMed ID: 6302097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective removal of lipids from the outer membrane layer of human erythrocytes without hemolysis. Consequences for bilayer stability and cell shape.
    Haest CW; Plasa G; Deuticke B
    Biochim Biophys Acta; 1981 Dec; 649(3):701-8. PubMed ID: 7317423
    [No Abstract]   [Full Text] [Related]  

  • 8. Changes in lipid metabolism and cell morphology following attack by phospholipase C (Clostridium perfringens) on red cells or lymphocytes.
    Allan D; Low MG; Finean JB; Michell RH
    Biochim Biophys Acta; 1975 Dec; 413(2):309-16. PubMed ID: 172156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectrin as a stabilizer of the phospholipid asymmetry in the human erythrocyte membrane.
    Haest CW; Plasa G; Kamp D; Deuticke B
    Biochim Biophys Acta; 1978 May; 509(1):21-32. PubMed ID: 647006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of phospholipase A2 treatment of human erythrocyte membranes on the rates of spectrin-actin dissociation.
    Gottlieb MH
    Biochim Biophys Acta; 1982 Mar; 686(1):133-6. PubMed ID: 7066319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solubilization of human red cell membranes by lysolecithins of various chain lengths.
    Condrea E
    Experientia; 1980 May; 36(5):531-3. PubMed ID: 7379942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycocholate can remove lipid and protein components from the outer leaflet of the plasma membrane without causing cell lysis.
    Coleman R; Holdsworth G; Vyvoda OS
    Biochem Soc Trans; 1976; 4(2):244. PubMed ID: 1001659
    [No Abstract]   [Full Text] [Related]  

  • 13. Role of membrane lipids and proteins in discocyte-echinocyte and -stomatocyte transformation of erythrocytes.
    Fujii T
    Acta Biol Med Ger; 1981; 40(4-5):361-7. PubMed ID: 7315084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resolution of the hemolytic and the hydrolytic activities of phospholipase-C preparation from Clostridium perfringens.
    Sabban E; Laster Y; Loyter A
    Eur J Biochem; 1972 Jul; 28(3):373-80. PubMed ID: 4342909
    [No Abstract]   [Full Text] [Related]  

  • 15. Dissociation and reconstitution of human erythrocyte membrane proteins using 3,4,5,6-tetrahydrophthalic anhydride.
    Howlett GJ; Wardrop AJ
    Arch Biochem Biophys; 1978 Jun; 188(2):429-37. PubMed ID: 677908
    [No Abstract]   [Full Text] [Related]  

  • 16. Preservation of bilayer structure in human erythrocytes and erythrocyte ghosts after phospholipase treatment. A 31P-NMR study.
    van Meer G; de Kruijff B; op den Kamp JA; van Deenen LL
    Biochim Biophys Acta; 1980 Feb; 596(1):1-9. PubMed ID: 7353001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of rabbit erythrocytes treated with phospholipase A2 from bee venom.
    Vaysse J; Pilardeau P; Garnier M
    Comp Biochem Physiol A Comp Physiol; 1986; 83(4):715-9. PubMed ID: 2870863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red cell membrane glycophorin labeling from within the lipid bilayer.
    Kahane I; Gitler C
    Science; 1978 Jul; 201(4353):351-2. PubMed ID: 663661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organization of phospholipids in human red cell membranes as detected by the action of various purified phospholipases.
    Zwaal RF; Roelofsen B; Comfurius P; van Deenen LL
    Biochim Biophys Acta; 1975 Sep; 406(1):83-96. PubMed ID: 169915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fusion of chicken erythrocytes by phospholipase C (Clostridium perfringens). The requirement for hemolytic and hydrolytic factors for fusion.
    Sabban E; Loyter A
    Biochim Biophys Acta; 1974 Aug; 362(1):100-9. PubMed ID: 4371392
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.