These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
364 related articles for article (PubMed ID: 19561118)
21. An intronic RNA structure modulates expression of the mRNA biogenesis factor Sus1. AbuQattam A; Gallego J; Rodríguez-Navarro S RNA; 2016 Jan; 22(1):75-86. PubMed ID: 26546116 [TBL] [Abstract][Full Text] [Related]
22. Unveiling novel interactions of histone chaperone Asf1 linked to TREX-2 factors Sus1 and Thp1. Pamblanco M; Oliete-Calvo P; García-Oliver E; Luz Valero M; Sanchez del Pino MM; Rodríguez-Navarro S Nucleus; 2014; 5(3):247-59. PubMed ID: 24824343 [TBL] [Abstract][Full Text] [Related]
23. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Sun ZW; Allis CD Nature; 2002 Jul; 418(6893):104-8. PubMed ID: 12077605 [TBL] [Abstract][Full Text] [Related]
24. A novel link between Sus1 and the cytoplasmic mRNA decay machinery suggests a broad role in mRNA metabolism. Cuenca-Bono B; García-Molinero V; Pascual-García P; García-Oliver E; Llopis A; Rodríguez-Navarro S BMC Cell Biol; 2010 Mar; 11():19. PubMed ID: 20230609 [TBL] [Abstract][Full Text] [Related]
25. Removal of a single alpha-tubulin gene intron suppresses cell cycle arrest phenotypes of splicing factor mutations in Saccharomyces cerevisiae. Burns CG; Ohi R; Mehta S; O'Toole ET; Winey M; Clark TA; Sugnet CW; Ares M; Gould KL Mol Cell Biol; 2002 Feb; 22(3):801-15. PubMed ID: 11784857 [TBL] [Abstract][Full Text] [Related]
26. A novel role for Sem1 and TREX-2 in transcription involves their impact on recruitment and H2B deubiquitylation activity of SAGA. García-Oliver E; Pascual-García P; García-Molinero V; Lenstra TL; Holstege FC; Rodríguez-Navarro S Nucleic Acids Res; 2013 Jun; 41(11):5655-68. PubMed ID: 23599000 [TBL] [Abstract][Full Text] [Related]
27. Protein arginine methylation of Npl3 promotes splicing of the SUS1 intron harboring non-consensus 5' splice site and branch site. Muddukrishna B; Jackson CA; Yu MC Biochim Biophys Acta Gene Regul Mech; 2017 Jun; 1860(6):730-739. PubMed ID: 28392442 [TBL] [Abstract][Full Text] [Related]
28. The histone variant H2A.Z promotes efficient cotranscriptional splicing in Neves LT; Douglass S; Spreafico R; Venkataramanan S; Kress TL; Johnson TL Genes Dev; 2017 Apr; 31(7):702-717. PubMed ID: 28446598 [TBL] [Abstract][Full Text] [Related]
29. Transient interaction of BBP/ScSF1 and Mud2 with the splicing machinery affects the kinetics of spliceosome assembly. Rutz B; Séraphin B RNA; 1999 Jun; 5(6):819-31. PubMed ID: 10376880 [TBL] [Abstract][Full Text] [Related]
30. Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Görnemann J; Kotovic KM; Hujer K; Neugebauer KM Mol Cell; 2005 Jul; 19(1):53-63. PubMed ID: 15989964 [TBL] [Abstract][Full Text] [Related]
31. Structure-function analysis of the 5' end of yeast U1 snRNA highlights genetic interactions with the Msl5*Mud2 branchpoint-binding complex and other spliceosome assembly factors. Schwer B; Chang J; Shuman S Nucleic Acids Res; 2013 Aug; 41(15):7485-500. PubMed ID: 23754852 [TBL] [Abstract][Full Text] [Related]
32. Linking cell cycle to histone modifications: SBF and H2B monoubiquitination machinery and cell-cycle regulation of H3K79 dimethylation. Schulze JM; Jackson J; Nakanishi S; Gardner JM; Hentrich T; Haug J; Johnston M; Jaspersen SL; Kobor MS; Shilatifard A Mol Cell; 2009 Sep; 35(5):626-41. PubMed ID: 19682934 [TBL] [Abstract][Full Text] [Related]
33. The conserved AU dinucleotide at the 5' end of nascent U1 snRNA is optimized for the interaction with nuclear cap-binding-complex. Yeh CS; Chang SL; Chen JH; Wang HK; Chou YC; Wang CH; Huang SH; Larson A; Pleiss JA; Chang WH; Chang TH Nucleic Acids Res; 2017 Sep; 45(16):9679-9693. PubMed ID: 28934473 [TBL] [Abstract][Full Text] [Related]
34. The Saccharomyces cerevisiae gene CDC40/PRP17 controls cell cycle progression through splicing of the ANC1 gene. Dahan O; Kupiec M Nucleic Acids Res; 2004; 32(8):2529-40. PubMed ID: 15133121 [TBL] [Abstract][Full Text] [Related]
35. A targeted bypass screen identifies Ynl187p, Prp42p, Snu71p, and Cbp80p for stable U1 snRNP/Pre-mRNA interaction. Hage R; Tung L; Du H; Stands L; Rosbash M; Chang TH Mol Cell Biol; 2009 Jul; 29(14):3941-52. PubMed ID: 19451230 [TBL] [Abstract][Full Text] [Related]
36. Both catalytic steps of nuclear pre-mRNA splicing are reversible. Tseng CK; Cheng SC Science; 2008 Jun; 320(5884):1782-4. PubMed ID: 18583613 [TBL] [Abstract][Full Text] [Related]
37. A nuclear cap-binding complex facilitates association of U1 snRNP with the cap-proximal 5' splice site. Lewis JD; Izaurralde E; Jarmolowski A; McGuigan C; Mattaj IW Genes Dev; 1996 Jul; 10(13):1683-98. PubMed ID: 8682298 [TBL] [Abstract][Full Text] [Related]
38. A central role of Cwc25 in spliceosome dynamics during the catalytic phase of pre-mRNA splicing. Tseng CK; Chung CS; Chen HC; Cheng SC RNA; 2017 Apr; 23(4):546-556. PubMed ID: 28057857 [TBL] [Abstract][Full Text] [Related]
39. Coupling of histone methylation and RNA processing by the nuclear mRNA cap-binding complex. Li Z; Jiang D; Fu X; Luo X; Liu R; He Y Nat Plants; 2016 Feb; 2():16015. PubMed ID: 27249350 [TBL] [Abstract][Full Text] [Related]
40. Cell-cycle perturbations suppress the slow-growth defect of spt10Δ mutants in Saccharomyces cerevisiae. Chang JS; Winston F G3 (Bethesda); 2013 Mar; 3(3):573-83. PubMed ID: 23450643 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]