BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 19561325)

  • 1. Rodent and nonrodent malaria parasites differ in their phospholipid metabolic pathways.
    Déchamps S; Maynadier M; Wein S; Gannoun-Zaki L; Maréchal E; Vial HJ
    J Lipid Res; 2010 Jan; 51(1):81-96. PubMed ID: 19561325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A pathway for phosphatidylcholine biosynthesis in Plasmodium falciparum involving phosphoethanolamine methylation.
    Pessi G; Kociubinski G; Mamoun CB
    Proc Natl Acad Sci U S A; 2004 Apr; 101(16):6206-11. PubMed ID: 15073329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of the Plasmodium falciparum PfPMT gene results in a complete loss of phosphatidylcholine biosynthesis via the serine-decarboxylase-phosphoethanolamine-methyltransferase pathway and severe growth and survival defects.
    Witola WH; El Bissati K; Pessi G; Xie C; Roepe PD; Mamoun CB
    J Biol Chem; 2008 Oct; 283(41):27636-27643. PubMed ID: 18694927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The origins, isolation, and biological characterization of rodent malaria parasites.
    Pattaradilokrat S; Wu J; Xu F; Su XZ
    Parasitol Int; 2022 Dec; 91():102636. PubMed ID: 35926694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo evidence for the specificity of Plasmodium falciparum phosphoethanolamine methyltransferase and its coupling to the Kennedy pathway.
    Pessi G; Choi JY; Reynolds JM; Voelker DR; Mamoun CB
    J Biol Chem; 2005 Apr; 280(13):12461-6. PubMed ID: 15664981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational and experimental elucidation of Plasmodium falciparum phosphoethanolamine methyltransferase inhibitors: Pivotal drug target.
    Singh J; Vijay S; Mansuri R; Rawal R; Kadian K; Sahoo GC; Kumar M; Sharma A
    PLoS One; 2019; 14(8):e0221032. PubMed ID: 31437171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmodium vinckei genomes provide insights into the pan-genome and evolution of rodent malaria parasites.
    Ramaprasad A; Klaus S; Douvropoulou O; Culleton R; Pain A
    BMC Biol; 2021 Apr; 19(1):69. PubMed ID: 33888092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Consequences of Mixed-Species Malaria Parasite Co-Infections in Mice and Mosquitoes for Disease Severity, Parasite Fitness, and Transmission Success.
    Tang J; Templeton TJ; Cao J; Culleton R
    Front Immunol; 2019; 10():3072. PubMed ID: 32038623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the genetics of malaria parasites, a memoir: Part II, the diversity and phylogeny of the rodent malaria parasites.
    Carter R
    Parasitol Int; 2022 Dec; 91():102650. PubMed ID: 36038058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of the Phosphatidylcholine Biosynthesis Pathways in Green Algae: Combinatorial Diversity of Methyltransferases.
    Hirashima T; Toyoshima M; Moriyama T; Sato N
    J Mol Evol; 2018 Jan; 86(1):68-76. PubMed ID: 29330556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning, expression and functional characterization of heme detoxification protein (HDP) from the rodent malaria parasite Plasmodium vinckei.
    Soni A; Goyal M; Prakash K; Bhardwaj J; Siddiqui AJ; Puri SK
    Gene; 2015 Jul; 566(1):109-19. PubMed ID: 25891072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The phylogeny of rodent malaria parasites: simultaneous analysis across three genomes.
    Perkins SL; Sarkar IN; Carter R
    Infect Genet Evol; 2007 Jan; 7(1):74-83. PubMed ID: 16765106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defining species specific genome differences in malaria parasites.
    Liew KJ; Hu G; Bozdech Z; Peter PR
    BMC Genomics; 2010 Feb; 11():128. PubMed ID: 20175934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of the precursors and interplay of the pathways in the phospholipid metabolism of the malaria parasite.
    Wein S; Ghezal S; Buré C; Maynadier M; Périgaud C; Vial HJ; Lefebvre-Tournier I; Wengelnik K; Cerdan R
    J Lipid Res; 2018 Aug; 59(8):1461-1471. PubMed ID: 29853527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced glycerol incorporation into phospholipids contributes to impaired intra-erythrocytic growth of glycerol kinase knockout Plasmodium falciparum parasites.
    Naidoo K; Coetzer TL
    Biochim Biophys Acta; 2013 Nov; 1830(11):5326-34. PubMed ID: 23954205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico identification of genetically attenuated vaccine candidate genes for Plasmodium liver stage.
    Kumar H; Frischknecht F; Mair GR; Gomes J
    Infect Genet Evol; 2015 Dec; 36():72-81. PubMed ID: 26348884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic modelling of phospholipid synthesis in Plasmodium knowlesi unravels crucial steps and relative importance of multiple pathways.
    Sen P; Vial HJ; Radulescu O
    BMC Syst Biol; 2013 Nov; 7():123. PubMed ID: 24209716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterologous immunity in rodent malaria: comparison of the degree of cross-immunity generated by vaccination with that produced by exposure to live infection.
    McColm AA; Dalton L
    Ann Trop Med Parasitol; 1983 Aug; 77(4):355-77. PubMed ID: 6357121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ICAM-1 is a key receptor mediating cytoadherence and pathology in the Plasmodium chabaudi malaria model.
    Cunningham DA; Lin JW; Brugat T; Jarra W; Tumwine I; Kushinga G; Ramesar J; Franke-Fayard B; Langhorne J
    Malar J; 2017 May; 16(1):185. PubMed ID: 28468674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhop-3 protein conservation among Plasmodium species and induced protection against lethal P. yoelii and P. berghei challenge.
    Wang T; Fujioka H; Drazba JA; Sam-Yellowe TY
    Parasitol Res; 2006 Aug; 99(3):238-52. PubMed ID: 16541261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.