BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1354 related articles for article (PubMed ID: 19561621)

  • 1. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli.
    Bennett BD; Kimball EH; Gao M; Osterhout R; Van Dien SJ; Rabinowitz JD
    Nat Chem Biol; 2009 Aug; 5(8):593-9. PubMed ID: 19561621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolite concentrations, fluxes and free energies imply efficient enzyme usage.
    Park JO; Rubin SA; Xu YF; Amador-Noguez D; Fan J; Shlomi T; Rabinowitz JD
    Nat Chem Biol; 2016 Jul; 12(7):482-9. PubMed ID: 27159581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo dynamics of glycolysis in Escherichia coli shows need for growth-rate dependent metabolome analysis.
    Schaub J; Reuss M
    Biotechnol Prog; 2008; 24(6):1402-7. PubMed ID: 19194955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of intracellular metabolites in Escherichia coli K12 using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques.
    Buchholz A; Takors R; Wandrey C
    Anal Biochem; 2001 Aug; 295(2):129-37. PubMed ID: 11488613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards creating an extended metabolic model (EMM) for E. coli using enzyme promiscuity prediction and metabolomics data.
    Amin SA; Chavez E; Porokhin V; Nair NU; Hassoun S
    Microb Cell Fact; 2019 Jun; 18(1):109. PubMed ID: 31196115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A synthetic glycerol assimilation pathway demonstrates biochemical constraints of cellular metabolism.
    Lindner SN; Aslan S; Müller A; Hoffart E; Behrens P; Edlich-Muth C; Blombach B; Bar-Even A
    FEBS J; 2020 Jan; 287(1):160-172. PubMed ID: 31436884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of lpdA gene knockout on the metabolism in Escherichia coli based on enzyme activities, intracellular metabolite concentrations and metabolic flux analysis by 13C-labeling experiments.
    Li M; Ho PY; Yao S; Shimizu K
    J Biotechnol; 2006 Mar; 122(2):254-66. PubMed ID: 16310273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic profiling of Escherichia coli cultivations: evaluation of extraction and metabolite analysis procedures.
    Hiller J; Franco-Lara E; Weuster-Botz D
    Biotechnol Lett; 2007 Aug; 29(8):1169-78. PubMed ID: 17479221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steady-state metabolite concentrations reflect a balance between maximizing enzyme efficiency and minimizing total metabolite load.
    Tepper N; Noor E; Amador-Noguez D; Haraldsdóttir HS; Milo R; Rabinowitz J; Liebermeister W; Shlomi T
    PLoS One; 2013; 8(9):e75370. PubMed ID: 24086517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative assessment of thermodynamic constraints on the solution space of genome-scale metabolic models.
    Hamilton JJ; Dwivedi V; Reed JL
    Biophys J; 2013 Jul; 105(2):512-22. PubMed ID: 23870272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RapidRIP quantifies the intracellular metabolome of 7 industrial strains of E. coli.
    McCloskey D; Xu J; Schrübbers L; Christensen HB; Herrgård MJ
    Metab Eng; 2018 May; 47():383-392. PubMed ID: 29702276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data.
    Kümmel A; Panke S; Heinemann M
    Mol Syst Biol; 2006; 2():2006.0034. PubMed ID: 16788595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Escherichia coli W shows fast, highly oxidative sucrose metabolism and low acetate formation.
    Arifin Y; Archer C; Lim S; Quek LE; Sugiarto H; Marcellin E; Vickers CE; Krömer JO; Nielsen LK
    Appl Microbiol Biotechnol; 2014 Nov; 98(21):9033-44. PubMed ID: 25125039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological functions of NAD- and NADP-linked malic enzymes in Escherichia coli.
    Murai T; Tokushige M; Nagai J; Katsuki H
    Biochem Biophys Res Commun; 1971 May; 43(4):875-81. PubMed ID: 4397922
    [No Abstract]   [Full Text] [Related]  

  • 15. The effect of carbon and nitrogen sources on the level of metabolic intermediates in Escherichia coli.
    Lowry OH; Carter J; Ward JB; Glaser L
    J Biol Chem; 1971 Nov; 246(21):6511-21. PubMed ID: 4257200
    [No Abstract]   [Full Text] [Related]  

  • 16. Metabolic engineering of mevalonate-producing Escherichia coli strains based on thermodynamic analysis.
    Nagai H; Masuda A; Toya Y; Matsuda F; Shimizu H
    Metab Eng; 2018 May; 47():1-9. PubMed ID: 29499375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global metabolic regulation analysis for Escherichia coli K12 based on protein expression by 2-dimensional electrophoresis and enzyme activity measurement.
    Peng L; Shimizu K
    Appl Microbiol Biotechnol; 2003 Apr; 61(2):163-78. PubMed ID: 12655459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allosteric Activation of Escherichia coli Glucosamine-6-Phosphate Deaminase (NagB) In Vivo Justified by Intracellular Amino Sugar Metabolite Concentrations.
    Álvarez-Añorve LI; Gaugué I; Link H; Marcos-Viquez J; Díaz-Jiménez DM; Zonszein S; Bustos-Jaimes I; Schmitz-Afonso I; Calcagno ML; Plumbridge J
    J Bacteriol; 2016 Jun; 198(11):1610-1620. PubMed ID: 27002132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolomics: quantification of intracellular metabolite dynamics.
    Buchholz A; Hurlebaus J; Wandrey C; Takors R
    Biomol Eng; 2002 Jun; 19(1):5-15. PubMed ID: 12103361
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 68.