These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 19562095)

  • 1. Design maps for failure of all-ceramic layer structures in concentrated cyclic loading.
    Bhowmick S; Meléndez-Martínez JJ; Zhang Y; Lawn BR
    Acta Mater; 2007 Apr; 55(7):2479-2488. PubMed ID: 19562095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of indenter material and size in veneer failure of brittle layer structures.
    Bhowmick S; Meléndez-Martínez JJ; Hermann I; Zhang Y; Lawn BR
    J Biomed Mater Res B Appl Biomater; 2007 Jul; 82(1):253-9. PubMed ID: 17183566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of core support material in veneer failure of brittle layer structures.
    Hermann I; Bhowmick S; Lawn BR
    J Biomed Mater Res B Appl Biomater; 2007 Jul; 82(1):115-21. PubMed ID: 17078086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Veneer vs. core failure in adhesively bonded all-ceramic crown layers.
    Lee JJ; Kwon JY; Bhowmick S; Lloyd IK; Rekow ED; Lawn BR
    J Dent Res; 2008 Apr; 87(4):363-6. PubMed ID: 18362320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fracture Modes in Curved Brittle Layers Subject to Concentrated Cyclic Loading in Liquid Environments.
    Kim JW; Thompson VP; Rekow ED; Jung YG; Zhang Y
    J Mater Res; 2009 Mar; 24(3):1075-1081. PubMed ID: 26028811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fracture of ceramic/ceramic/polymer trilayers for biomechanical applications.
    Deng Y; Miranda P; Pajares A; Guiberteau F; Lawn BR
    J Biomed Mater Res A; 2003 Dec; 67(3):828-33. PubMed ID: 14613230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep-penetrating conical cracks in brittle layers from hydraulic cyclic contact.
    Zhang Y; Song JK; Lawn BR
    J Biomed Mater Res B Appl Biomater; 2005 Apr; 73(1):186-93. PubMed ID: 15672403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contact fatigue response of porcelain-veneered alumina model systems.
    Stappert CF; Baldassarri M; Zhang Y; Stappert D; Thompson VP
    J Biomed Mater Res B Appl Biomater; 2012 Feb; 100(2):508-15. PubMed ID: 22113973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic contact fatigue resistance of ceramics for monolithic and multilayer dental restorations.
    Alessandretti R; Borba M; Della Bona A
    Dent Mater; 2020 Apr; 36(4):535-541. PubMed ID: 32057488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graded structures for damage resistant and aesthetic all-ceramic restorations.
    Zhang Y; Kim JW
    Dent Mater; 2009 Jun; 25(6):781-90. PubMed ID: 19187955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bearing capacity of ceramic crowns before and after cyclic loading: An in vitro study.
    Liu Y; Gao S; Han Y; Yang Q; Arola D; Zhang D
    J Mech Behav Biomed Mater; 2018 Nov; 87():197-204. PubMed ID: 30077811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plastic damage induced fracture behaviors of dental ceramic layer structures subjected to monotonic load.
    Wang R; Lu C; Arola D; Zhang D
    J Prosthodont; 2013 Aug; 22(6):456-64. PubMed ID: 23551817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fracture Strength of Zirconia and Alumina Ceramic Crowns Supported by Implants.
    Traini T; Sorrentino R; Gherlone E; Perfetti F; Bollero P; Zarone F
    J Oral Implantol; 2015 Jul; 41 Spec No():352-9. PubMed ID: 24779915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of indenter material on reliability of all-ceramic crowns.
    Lorenzoni FC; Bonfante EA; Valverde GB; Coelho PG; Bonfante G; Thompson VP; Silva NRFA
    J Mech Behav Biomed Mater; 2020 Aug; 108():103831. PubMed ID: 32469725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Off-axis sliding contact reliability and failure modes of veneered alumina and zirconia.
    Santana T; Zhang Y; Guess P; Thompson VP; Rekow ED; Silva NR
    Dent Mater; 2009 Jul; 25(7):892-8. PubMed ID: 19215976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competition of fracture mechanisms in monolithic dental ceramics: flat model systems.
    Zhang Y; Kim JW; Bhowmick S; Thompson VP; Rekow ED
    J Biomed Mater Res B Appl Biomater; 2009 Feb; 88(2):402-11. PubMed ID: 18478533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transverse fracture of brittle bilayers: relevance to failure of all-ceramic dental crowns.
    Kim JW; Bhowmick S; Hermann I; Lawn BR
    J Biomed Mater Res B Appl Biomater; 2006 Oct; 79(1):58-65. PubMed ID: 16470832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithium disilicate glass-ceramic vs translucent zirconia polycrystals bonded to distinct substrates: Fatigue failure load, number of cycles for failure, survival rates, and stress distribution.
    Pereira GKR; Graunke P; Maroli A; Zucuni CP; Prochnow C; Valandro LF; Caldas RA; Bacchi A
    J Mech Behav Biomed Mater; 2019 Mar; 91():122-130. PubMed ID: 30579109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Influence of veneer application on failure behavior and reliability of lithium disilicate glass-ceramic molar crowns].
    Wei YR; Pan Y; Cao SS; Zhang XP; Zhao K
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2013 Feb; 48(2):91-5. PubMed ID: 23714061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of fatigue resistance and failure modes between metal-ceramic and all-ceramic crowns by cyclic loading in water.
    Nicolaisen MH; Bahrami G; Finlay S; Isidor F
    J Dent; 2014 Dec; 42(12):1613-20. PubMed ID: 25174946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.