These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 19562260)

  • 1. Second-generation de novo design: a view from a medicinal chemist perspective.
    Zaliani A; Boda K; Seidel T; Herwig A; Schwab CH; Gasteiger J; Claussen H; Lemmen C; Degen J; Pärn J; Rarey M
    J Comput Aided Mol Des; 2009 Aug; 23(8):593-602. PubMed ID: 19562260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico fragment-based drug discovery: setup and validation of a fragment-to-lead computational protocol using S4MPLE.
    Hoffer L; Renaud JP; Horvath D
    J Chem Inf Model; 2013 Apr; 53(4):836-51. PubMed ID: 23537132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent developments in de novo design and scaffold hopping.
    Mauser H; Guba W
    Curr Opin Drug Discov Devel; 2008 May; 11(3):365-74. PubMed ID: 18428090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An extensive and diverse set of molecular overlays for the validation of pharmacophore programs.
    Giangreco I; Cosgrove DA; Packer MJ
    J Chem Inf Model; 2013 Apr; 53(4):852-66. PubMed ID: 23565904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in de novo design strategy for practical lead identification.
    Honma T
    Med Res Rev; 2003 Sep; 23(5):606-32. PubMed ID: 12789688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is chemical synthetic accessibility computationally predictable for drug and lead-like molecules? A comparative assessment between medicinal and computational chemists.
    Bonnet P
    Eur J Med Chem; 2012 Aug; 54():679-89. PubMed ID: 22749644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of compound libraries for fragment screening.
    Blomberg N; Cosgrove DA; Kenny PW; Kolmodin K
    J Comput Aided Mol Des; 2009 Aug; 23(8):513-25. PubMed ID: 19283339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-ligand-based pharmacophores: generation and utility assessment in computational ligand profiling.
    Meslamani J; Li J; Sutter J; Stevens A; Bertrand HO; Rognan D
    J Chem Inf Model; 2012 Apr; 52(4):943-55. PubMed ID: 22480372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational fragment-based de novo design protocol guided by ligand efficiency indices (LEI).
    Cortés-Cabrera Á; Gago F; Morreale A
    Methods Mol Biol; 2015; 1289():89-100. PubMed ID: 25709035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetic analysis of fragment docking and application to structure-based pharmacophore hypothesis generation.
    Loving K; Salam NK; Sherman W
    J Comput Aided Mol Des; 2009 Aug; 23(8):541-54. PubMed ID: 19421721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From Target to Drug: Generative Modeling for the Multimodal Structure-Based Ligand Design.
    Skalic M; Sabbadin D; Sattarov B; Sciabola S; De Fabritiis G
    Mol Pharm; 2019 Oct; 16(10):4282-4291. PubMed ID: 31437001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular conceptor for training in medicinal chemistry, drug design, and cheminformatics.
    Cohen C; Fischel O; Cohen E
    Chem Biol Drug Des; 2007 Jan; 69(1):75-82. PubMed ID: 17313460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction-driven de novo design, synthesis and testing of potential type II kinase inhibitors.
    Schneider G; Geppert T; Hartenfeller M; Reisen F; Klenner A; Reutlinger M; Hähnke V; Hiss JA; Zettl H; Keppner S; Spänkuch B; Schneider P
    Future Med Chem; 2011 Mar; 3(4):415-24. PubMed ID: 21452978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LEA3D: a computer-aided ligand design for structure-based drug design.
    Douguet D; Munier-Lehmann H; Labesse G; Pochet S
    J Med Chem; 2005 Apr; 48(7):2457-68. PubMed ID: 15801836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fragment-Based Ligand Designing.
    Katiyar SP; Malik V; Kumari A; Singh K; Sundar D
    Methods Mol Biol; 2018; 1762():123-144. PubMed ID: 29594771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fragment hopping protocol for the design of small-molecule protein-protein interaction inhibitors.
    Kell SR; Wang Z; Ji H
    Bioorg Med Chem; 2022 Sep; 69():116879. PubMed ID: 35749838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing reaction-based de novo design using a multi-label reaction class recommender.
    Ghiandoni GM; Bodkin MJ; Chen B; Hristozov D; Wallace JEA; Webster J; Gillet VJ
    J Comput Aided Mol Des; 2020 Jul; 34(7):783-803. PubMed ID: 32112286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational fragment-based drug design to explore the hydrophobic sub-pocket of the mitotic kinesin Eg5 allosteric binding site.
    Oguievetskaia K; Martin-Chanas L; Vorotyntsev A; Doppelt-Azeroual O; Brotel X; Adcock SA; de Brevern AG; Delfaud F; Moriaud F
    J Comput Aided Mol Des; 2009 Aug; 23(8):571-82. PubMed ID: 19533373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer-aided design of GPCR ligands.
    Gutiérrez-de-Terán H; Keränen H; Azuaje J; Rodríguez D; Åqvist J; Sotelo E
    Methods Mol Biol; 2015; 1272():271-91. PubMed ID: 25563191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple Target Drug Design Using LigBuilder 3.
    Qing X; Wang S; Yuan Y; Pei J; Lai L
    Methods Mol Biol; 2021; 2266():279-298. PubMed ID: 33759133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.