These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 19562334)
1. Stimulation of artemisinin synthesis by combined cerebroside and nitric oxide elicitation in Artemisia annua hairy roots. Wang JW; Zheng LP; Zhang B; Zou T Appl Microbiol Biotechnol; 2009 Nov; 85(2):285-92. PubMed ID: 19562334 [TBL] [Abstract][Full Text] [Related]
2. Involvement of nitric oxide in cerebroside-induced defense responses and taxol production in Taxus yunnanensis suspension cells. Wang JW; Zheng LP; Tan RX Appl Microbiol Biotechnol; 2007 Jul; 75(5):1183-90. PubMed ID: 17375294 [TBL] [Abstract][Full Text] [Related]
3. Nitric oxide potentiates oligosaccharide-induced artemisinin production in Artemisia annua hairy roots. Zheng LP; Guo YT; Wang JW; Tan RX J Integr Plant Biol; 2008 Jan; 50(1):49-55. PubMed ID: 18666951 [TBL] [Abstract][Full Text] [Related]
4. [The preparation of an elicitor from a fungal endophyte to enhance artemisinin production in hairy root cultures of Artemisia annua L]. Wang JW; Zheng LP; Tan RX Sheng Wu Gong Cheng Xue Bao; 2006 Sep; 22(5):829-34. PubMed ID: 17037210 [TBL] [Abstract][Full Text] [Related]
5. Improvement of artemisinin production by chitosan in hairy root cultures of Artemisia annua L. Putalun W; Luealon W; De-Eknamkul W; Tanaka H; Shoyama Y Biotechnol Lett; 2007 Jul; 29(7):1143-6. PubMed ID: 17426924 [TBL] [Abstract][Full Text] [Related]
6. Enhancement of artemisinin content in tetraploid Artemisia annua plants by modulating the expression of genes in artemisinin biosynthetic pathway. Lin X; Zhou Y; Zhang J; Lu X; Zhang F; Shen Q; Wu S; Chen Y; Wang T; Tang K Biotechnol Appl Biochem; 2011; 58(1):50-7. PubMed ID: 21446959 [TBL] [Abstract][Full Text] [Related]
7. Nitric Oxide Plays a Central Role in Water Stress-Induced Tanshinone Production in Salvia miltiorrhiza Hairy Roots. Du X; Zhang C; Guo W; Jin W; Liang Z; Yan X; Guo Z; Liu Y; Yang D Molecules; 2015 Apr; 20(5):7574-85. PubMed ID: 25919278 [TBL] [Abstract][Full Text] [Related]
8. Branch Pathway Blocking in Artemisia annua is a Useful Method for Obtaining High Yield Artemisinin. Lv Z; Zhang F; Pan Q; Fu X; Jiang W; Shen Q; Yan T; Shi P; Lu X; Sun X; Tang K Plant Cell Physiol; 2016 Mar; 57(3):588-602. PubMed ID: 26858285 [TBL] [Abstract][Full Text] [Related]
9. Chemotype-dependent metabolic response to methyl jasmonate elicitation in Artemisia annua. Wu W; Yuan M; Zhang Q; Zhu Y; Yong L; Wang W; Qi Y; Guo D Planta Med; 2011 Jul; 77(10):1048-53. PubMed ID: 21267809 [TBL] [Abstract][Full Text] [Related]
10. Relative expression of genes of terpene metabolism in different tissues of Artemisia annua L. Olofsson L; Engström A; Lundgren A; Brodelius PE BMC Plant Biol; 2011 Mar; 11():45. PubMed ID: 21388533 [TBL] [Abstract][Full Text] [Related]
11. Tetraploid Artemisia annua hairy roots produce more artemisinin than diploids. De Jesus-Gonzalez L; Weathers PJ Plant Cell Rep; 2003 Apr; 21(8):809-13. PubMed ID: 12789527 [TBL] [Abstract][Full Text] [Related]
12. Cerebroside analogues from marine-derived fungus Aspergillus flavipes. Jiang T; Li T; Li J; Fu HZ; Pei YH; Lin WH J Asian Nat Prod Res; 2004 Dec; 6(4):249-57. PubMed ID: 15621583 [TBL] [Abstract][Full Text] [Related]
13. Overexpression of artemisinic aldehyde Δ11 (13) reductase gene-enhanced artemisinin and its relative metabolite biosynthesis in transgenic Artemisia annua L. Yuan Y; Liu W; Zhang Q; Xiang L; Liu X; Chen M; Lin Z; Wang Q; Liao Z Biotechnol Appl Biochem; 2015; 62(1):17-23. PubMed ID: 25040292 [TBL] [Abstract][Full Text] [Related]
14. Enhanced production of artemisinin by hairy root cultivation of Artemisia annua in a modified stirred tank reactor. Patra N; Srivastava AK Appl Biochem Biotechnol; 2014 Nov; 174(6):2209-22. PubMed ID: 25172060 [TBL] [Abstract][Full Text] [Related]
15. The effect of roots and media constituents on trichomes and artemisinin production in Artemisia annua L. Nguyen KT; Towler MJ; Weathers PJ Plant Cell Rep; 2013 Feb; 32(2):207-18. PubMed ID: 23085820 [TBL] [Abstract][Full Text] [Related]
16. Using β-ocimene to increase the artemisinin content in juvenile plants of Artemisia annua L. Xiao M; Liu R; Long C; Ruan Y; Liu C Biotechnol Lett; 2020 Jul; 42(7):1161-1167. PubMed ID: 32162132 [TBL] [Abstract][Full Text] [Related]
17. Nitric oxide regulates shikonin formation in suspension-cultured Onosma paniculatum cells. Wu SJ; Qi JL; Zhang WJ; Liu SH; Xiao FH; Zhang MS; Xu GH; Zhao WG; Shi MW; Pang YJ; Shen HG; Yang YH Plant Cell Physiol; 2009 Jan; 50(1):118-28. PubMed ID: 19022805 [TBL] [Abstract][Full Text] [Related]
18. Cold stress improves the production of artemisinin depending on the increase in endogenous jasmonate. Liu W; Wang H; Chen Y; Zhu S; Chen M; Lan X; Chen G; Liao Z Biotechnol Appl Biochem; 2017 May; 64(3):305-314. PubMed ID: 26988377 [TBL] [Abstract][Full Text] [Related]
19. Use of Model-Based Nutrient Feeding for Improved Production of Artemisinin by Hairy Roots of Artemisia Annua in a Modified Stirred Tank Bioreactor. Patra N; Srivastava AK Appl Biochem Biotechnol; 2015 Sep; 177(2):373-88. PubMed ID: 26206459 [TBL] [Abstract][Full Text] [Related]
20. Role of nitric oxide dependence on nitric oxide synthase-like activity in the water stress signaling of maize seedling. Hao GP; Xing Y; Zhang JH J Integr Plant Biol; 2008 Apr; 50(4):435-42. PubMed ID: 18713377 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]