BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 19562790)

  • 1. Zeolite-catalyzed isomerization of triose sugars.
    Taarning E; Saravanamurugan S; Holm MS; Xiong J; West RM; Christensen CH
    ChemSusChem; 2009 Jul; 2(7):625-7. PubMed ID: 19562790
    [No Abstract]   [Full Text] [Related]  

  • 2. Tin-catalyzed conversion of trioses to alkyl lactates in alcohol solution.
    Hayashi Y; Sasaki Y
    Chem Commun (Camb); 2005 Jun; (21):2716-8. PubMed ID: 15917930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly selective Lewis acid sites in desilicated MFI zeolites for dihydroxyacetone isomerization to lactic acid.
    Dapsens PY; Mondelli C; Pérez-Ramírez J
    ChemSusChem; 2013 May; 6(5):831-9. PubMed ID: 23554234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly active and recyclable Sn-MWW zeolite catalyst for sugar conversion to methyl lactate and lactic acid.
    Guo Q; Fan F; Pidko EA; van der Graaff WN; Feng Z; Li C; Hensen EJ
    ChemSusChem; 2013 Aug; 6(8):1352-6. PubMed ID: 23776010
    [No Abstract]   [Full Text] [Related]  

  • 5. GREEN CHEMISTRY. Shape-selective zeolite catalysis for bioplastics production.
    Dusselier M; Van Wouwe P; Dewaele A; Jacobs PA; Sels BF
    Science; 2015 Jul; 349(6243):78-80. PubMed ID: 26138977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon-silica catalysts.
    de Clippel F; Dusselier M; Van Rompaey R; Vanelderen P; Dijkmans J; Makshina E; Giebeler L; Oswald S; Baron GV; Denayer JF; Pescarmona PP; Jacobs PA; Sels BF
    J Am Chem Soc; 2012 Jun; 134(24):10089-101. PubMed ID: 22550936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Xylose isomerization with zeolites in a two-step alcohol-water process.
    Paniagua M; Saravanamurugan S; Melian-Rodriguez M; Melero JA; Riisager A
    ChemSusChem; 2015 Mar; 8(6):1088-94. PubMed ID: 25703506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isomerization of glucose into fructose by environmentally friendly Fe/β zeolite catalysts.
    Xu S; Zhang L; Xiao K; Xia H
    Carbohydr Res; 2017 Jun; 446-447():48-51. PubMed ID: 28505465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst.
    Dong W; Shen Z; Peng B; Gu M; Zhou X; Xiang B; Zhang Y
    Sci Rep; 2016 May; 6():26713. PubMed ID: 27222322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational investigation of ring-shift isomerization of sym-octahydrophenanthrene to sym-octahydroanthracene catalyzed by acidic zeolites.
    Nie X; Janik MJ; Guo X; Song C
    Phys Chem Chem Phys; 2012 Dec; 14(48):16644-53. PubMed ID: 23015038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards a molecular understanding of shape selectivity.
    Smit B; Maesen TL
    Nature; 2008 Feb; 451(7179):671-8. PubMed ID: 18256663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Pillared, Single-Unit-Cell Sn-MFI Zeolite Nanosheets and Their Use for Glucose and Lactose Isomerization.
    Ren L; Guo Q; Kumar P; Orazov M; Xu D; Alhassan SM; Mkhoyan KA; Davis ME; Tsapatsis M
    Angew Chem Int Ed Engl; 2015 Sep; 54(37):10848-51. PubMed ID: 26218555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study of 1,2-hydride shift associated with the isomerization of glyceraldehyde to dihydroxy acetone by Lewis acid active site models.
    Assary RS; Curtiss LA
    J Phys Chem A; 2011 Aug; 115(31):8754-60. PubMed ID: 21707087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tin-catalyzed conversion of biomass-derived triose sugar and formaldehyde to α-hydroxy-γ-butyrolactone.
    Yamaguchi S; Motokura K; Sakamoto Y; Miyaji A; Baba T
    Chem Commun (Camb); 2014 May; 50(35):4600-2. PubMed ID: 24668044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of glucose isomerization using a solid Lewis acid catalyst in water.
    Román-Leshkov Y; Moliner M; Labinger JA; Davis ME
    Angew Chem Int Ed Engl; 2010 Nov; 49(47):8954-7. PubMed ID: 20963742
    [No Abstract]   [Full Text] [Related]  

  • 16. The sugar model: autocatalytic activity of the triose-ammonia reaction.
    Weber AL
    Orig Life Evol Biosph; 2007 Apr; 37(2):105-11. PubMed ID: 17225954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zeolite catalyzed selective deprotection of di- and tri-O-isopropylidene sugar acetals.
    Bhaskar PM; Mathiselvam M; Loganathan D
    Carbohydr Res; 2008 Jul; 343(10-11):1801-7. PubMed ID: 18502410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The sugar model: catalytic flow reactor dynamics of pyruvaldehyde synthesis from triose catalyzed by poly-l-lysine contained in a dialyzer.
    Weber AL
    Orig Life Evol Biosph; 2001 Jun; 31(3):231-40. PubMed ID: 11434102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of free fatty acid in waste frying oil by esterification with methanol on zeolite catalysts.
    Chung KH; Chang DR; Park BG
    Bioresour Technol; 2008 Nov; 99(16):7438-43. PubMed ID: 18387298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of in situ MAS NMR techniques to the understanding of the mechanisms of zeolite catalyzed reactions.
    Ivanova II; Kolyagin YG
    Chem Soc Rev; 2010 Dec; 39(12):5018-50. PubMed ID: 21038049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.