BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 19562941)

  • 1. [Development of animal models for schizophrenia based on clinical evidence: expectation for psychiatrists].
    Noda Y; Mouri A; Waki Y; Nabeshima T
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2009 Apr; 29(2):47-53. PubMed ID: 19562941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phencyclidine and genetic animal models of schizophrenia developed in relation to the glutamate hypothesis.
    Enomoto T; Noda Y; Nabeshima T
    Methods Find Exp Clin Pharmacol; 2007 May; 29(4):291-301. PubMed ID: 17609743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Animal model of schizophrenia: dysfunction of NMDA receptor-signaling in mice following withdrawal from repeated administration of phencyclidine.
    Nabeshima T; Mouri A; Murai R; Noda Y
    Ann N Y Acad Sci; 2006 Nov; 1086():160-8. PubMed ID: 17185514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phencyclidine animal models of schizophrenia: approaches from abnormality of glutamatergic neurotransmission and neurodevelopment.
    Mouri A; Noda Y; Enomoto T; Nabeshima T
    Neurochem Int; 2007; 51(2-4):173-84. PubMed ID: 17669558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Glutaminergic hypothesis of schizophrenia: clinical research studies with ketamine].
    Mechri A; Saoud M; Khiari G; d'Amato T; Dalery J; Gaha L
    Encephale; 2001; 27(1):53-9. PubMed ID: 11294039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions.
    Javitt DC
    Int Rev Neurobiol; 2007; 78():69-108. PubMed ID: 17349858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Glutamate hypothesis of schizophrenia and targets for new antipsychotic drugs].
    Hashimoto K; Iyo M
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2002 Feb; 22(1):3-13. PubMed ID: 11917507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonism.
    Neill JC; Barnes S; Cook S; Grayson B; Idris NF; McLean SL; Snigdha S; Rajagopal L; Harte MK
    Pharmacol Ther; 2010 Dec; 128(3):419-32. PubMed ID: 20705091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mice with genetically altered glutamate receptors as models of schizophrenia: a comprehensive review.
    Inta D; Monyer H; Sprengel R; Meyer-Lindenberg A; Gass P
    Neurosci Biobehav Rev; 2010 Mar; 34(3):285-94. PubMed ID: 19651155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Models of schizophrenia in humans and animals based on inhibition of NMDA receptors.
    Bubeníková-Valesová V; Horácek J; Vrajová M; Höschl C
    Neurosci Biobehav Rev; 2008 Jul; 32(5):1014-23. PubMed ID: 18471877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do NMDA receptor antagonist models of schizophrenia predict the clinical efficacy of antipsychotic drugs?
    Large CH
    J Psychopharmacol; 2007 May; 21(3):283-301. PubMed ID: 17591656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significant linkage and association between a functional (GT)n polymorphism in promoter of the N-methyl-D-aspartate receptor subunit gene (GRIN2A) and schizophrenia.
    Tang J; Chen X; Xu X; Wu R; Zhao J; Hu Z; Xia K
    Neurosci Lett; 2006 Nov; 409(1):80-2. PubMed ID: 17011703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in the phencyclidine model of schizophrenia.
    Javitt DC; Zukin SR
    Am J Psychiatry; 1991 Oct; 148(10):1301-8. PubMed ID: 1654746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Baseline temperature in an animal model of schizophrenia: long-term effects of perinatal phencyclidine administration.
    Radonjić NV; Petronijević ND; Vucković SM; Prostran MS; Nesić ZI; Todorović VR; Paunović VR
    Physiol Behav; 2008 Feb; 93(3):437-43. PubMed ID: 17996259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of NMDA receptor models of schizophrenia: divergences in the behavioral effects of sub-chronic PCP and MK-801.
    Seillier A; Giuffrida A
    Behav Brain Res; 2009 Dec; 204(2):410-5. PubMed ID: 19716985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PCP: from pharmacology to modelling schizophrenia.
    Morris BJ; Cochran SM; Pratt JA
    Curr Opin Pharmacol; 2005 Feb; 5(1):101-6. PubMed ID: 15661633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Susceptibility genes for schizophrenia: characterisation of mutant mouse models at the level of phenotypic behaviour.
    O'Tuathaigh CM; Babovic D; O'Meara G; Clifford JJ; Croke DT; Waddington JL
    Neurosci Biobehav Rev; 2007; 31(1):60-78. PubMed ID: 16782199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of YWHAE, a gene encoding 14-3-3epsilon, as a possible susceptibility gene for schizophrenia.
    Ikeda M; Hikita T; Taya S; Uraguchi-Asaki J; Toyo-oka K; Wynshaw-Boris A; Ujike H; Inada T; Takao K; Miyakawa T; Ozaki N; Kaibuchi K; Iwata N
    Hum Mol Genet; 2008 Oct; 17(20):3212-22. PubMed ID: 18658164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of Disrupted-In-Schizophrenia-1 (DISC1): neurodevelopment, cognition, and mental conditions.
    Ishizuka K; Paek M; Kamiya A; Sawa A
    Biol Psychiatry; 2006 Jun; 59(12):1189-97. PubMed ID: 16797264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inducible expression of mutant human DISC1 in mice is associated with brain and behavioral abnormalities reminiscent of schizophrenia.
    Pletnikov MV; Ayhan Y; Nikolskaia O; Xu Y; Ovanesov MV; Huang H; Mori S; Moran TH; Ross CA
    Mol Psychiatry; 2008 Feb; 13(2):173-86, 115. PubMed ID: 17848917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.