These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 19563118)
1. The use of 2-aminopurine fluorescence to study DNA polymerase function. Reha-Krantz LJ Methods Mol Biol; 2009; 521():381-96. PubMed ID: 19563118 [TBL] [Abstract][Full Text] [Related]
2. Using 2-aminopurine fluorescence to detect bacteriophage T4 DNA polymerase-DNA complexes that are important for primer extension and proofreading reactions. Hariharan C; Reha-Krantz LJ Biochemistry; 2005 Dec; 44(48):15674-84. PubMed ID: 16313170 [TBL] [Abstract][Full Text] [Related]
3. Probing DNA polymerase-DNA interactions: examining the template strand in exonuclease complexes using 2-aminopurine fluorescence and acrylamide quenching. Tleugabulova D; Reha-Krantz LJ Biochemistry; 2007 Jun; 46(22):6559-69. PubMed ID: 17497891 [TBL] [Abstract][Full Text] [Related]
5. Using 2-aminopurine fluorescence to measure incorporation of incorrect nucleotides by wild type and mutant bacteriophage T4 DNA polymerases. Fidalgo da Silva E; Mandal SS; Reha-Krantz LJ J Biol Chem; 2002 Oct; 277(43):40640-9. PubMed ID: 12189135 [TBL] [Abstract][Full Text] [Related]
6. Exonuclease-polymerase active site partitioning of primer-template DNA strands and equilibrium Mg2+ binding properties of bacteriophage T4 DNA polymerase. Beechem JM; Otto MR; Bloom LB; Eritja R; Reha-Krantz LJ; Goodman MF Biochemistry; 1998 Jul; 37(28):10144-55. PubMed ID: 9665720 [TBL] [Abstract][Full Text] [Related]
7. Conformational changes during normal and error-prone incorporation of nucleotides by a Y-family DNA polymerase detected by 2-aminopurine fluorescence. DeLucia AM; Grindley ND; Joyce CM Biochemistry; 2007 Sep; 46(38):10790-803. PubMed ID: 17725324 [TBL] [Abstract][Full Text] [Related]
8. DNA polymerase proofreading: active site switching catalyzed by the bacteriophage T4 DNA polymerase. Fidalgo da Silva E; Reha-Krantz LJ Nucleic Acids Res; 2007; 35(16):5452-63. PubMed ID: 17702757 [TBL] [Abstract][Full Text] [Related]
9. Structure and dynamics in DNA looped domains: CAG triplet repeat sequence dynamics probed by 2-aminopurine fluorescence. Lee BJ; Barch M; Castner EW; Völker J; Breslauer KJ Biochemistry; 2007 Sep; 46(38):10756-66. PubMed ID: 17718541 [TBL] [Abstract][Full Text] [Related]
10. The nucleotide analog 2-aminopurine as a spectroscopic probe of nucleotide incorporation by the Klenow fragment of Escherichia coli polymerase I and bacteriophage T4 DNA polymerase. Frey MW; Sowers LC; Millar DP; Benkovic SJ Biochemistry; 1995 Jul; 34(28):9185-92. PubMed ID: 7619819 [TBL] [Abstract][Full Text] [Related]
11. Fluorescence of 2-aminopurine reveals rapid conformational changes in the RB69 DNA polymerase-primer/template complexes upon binding and incorporation of matched deoxynucleoside triphosphates. Zhang H; Cao W; Zakharova E; Konigsberg W; De La Cruz EM Nucleic Acids Res; 2007; 35(18):6052-62. PubMed ID: 17766250 [TBL] [Abstract][Full Text] [Related]
13. Using 2-aminopurine fluorescence to detect base unstacking in the template strand during nucleotide incorporation by the bacteriophage T4 DNA polymerase. Mandal SS; Fidalgo da Silva E; Reha-Krantz LJ Biochemistry; 2002 Apr; 41(13):4399-406. PubMed ID: 11914087 [TBL] [Abstract][Full Text] [Related]
14. Long-wavelength fluorescence from 2-aminopurine-nucleobase dimers in DNA. Bonnist EY; Jones AC Chemphyschem; 2008 Jun; 9(8):1121-9. PubMed ID: 18446915 [TBL] [Abstract][Full Text] [Related]
15. Use of 2-aminopurine fluorescence to examine conformational changes during nucleotide incorporation by DNA polymerase I (Klenow fragment). Purohit V; Grindley ND; Joyce CM Biochemistry; 2003 Sep; 42(34):10200-11. PubMed ID: 12939148 [TBL] [Abstract][Full Text] [Related]
16. Stopped-flow fluorescence study of precatalytic primer strand base-unstacking transitions in the exonuclease cleft of bacteriophage T4 DNA polymerase. Otto MR; Bloom LB; Goodman MF; Beechem JM Biochemistry; 1998 Jul; 37(28):10156-63. PubMed ID: 9665721 [TBL] [Abstract][Full Text] [Related]
17. Molecular enzymology of the EcoRV DNA-(Adenine-N (6))-methyltransferase: kinetics of DNA binding and bending, kinetic mechanism and linear diffusion of the enzyme on DNA. Gowher H; Jeltsch A J Mol Biol; 2000 Oct; 303(1):93-110. PubMed ID: 11021972 [TBL] [Abstract][Full Text] [Related]
18. Formation of an intramolecular triple-stranded DNA structure monitored by fluorescence of 2-aminopurine or 6-methylisoxanthopterin. Shchyolkina AK; Kaluzhny DN; Borisova OF; Hawkins ME; Jernigan RL; Jovin TM; Arndt-Jovin DJ; Zhurkin VB Nucleic Acids Res; 2004; 32(2):432-40. PubMed ID: 14739235 [TBL] [Abstract][Full Text] [Related]
19. The kinetic mechanism of formation of the bacteriophage T4 DNA polymerase sliding clamp. Young MC; Weitzel SE; von Hippel PH J Mol Biol; 1996 Dec; 264(3):440-52. PubMed ID: 8969296 [TBL] [Abstract][Full Text] [Related]
20. Spectroscopic and calorimetric characterizations of DNA duplexes containing 2-aminopurine. Law SM; Eritja R; Goodman MF; Breslauer KJ Biochemistry; 1996 Sep; 35(38):12329-37. PubMed ID: 8823167 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]