These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 19563421)

  • 1. Global optimal design of ground water monitoring network using embedded kriging.
    Dhar A; Datta B
    Ground Water; 2009; 47(6):806-15. PubMed ID: 19563421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cost-effective sampling network design for contaminant plume monitoring under general hydrogeological conditions.
    Wu J; Zheng C; Chien CC
    J Contam Hydrol; 2005 Mar; 77(1-2):41-65. PubMed ID: 15722172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncertainty based optimal monitoring network design for a chlorinated hydrocarbon contaminated site.
    Chadalavada S; Datta B; Naidu R
    Environ Monit Assess; 2011 Feb; 173(1-4):929-40. PubMed ID: 20390346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal water quality monitoring network design for river systems.
    Telci IT; Nam K; Guan J; Aral MM
    J Environ Manage; 2009 Jul; 90(10):2987-98. PubMed ID: 19501953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computationally efficient approach for identification of fuzzy dynamic groundwater sampling network.
    Kumari K; Jain S; Dhar A
    Environ Monit Assess; 2019 Apr; 191(5):310. PubMed ID: 31030264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-criteria decision analysis for the optimal management of nitrate contamination of aquifers.
    Almasri MN; Kaluarachchi JJ
    J Environ Manage; 2005 Mar; 74(4):365-81. PubMed ID: 15737460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locating monitoring wells in groundwater systems using embedded optimization and simulation models.
    Bashi-Azghadi SN; Kerachian R
    Sci Total Environ; 2010 Apr; 408(10):2189-98. PubMed ID: 20189633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Source screening module for contaminant transport analysis through vadose and saturated zones.
    Bedekar V; Neville C; Tonkin M
    Ground Water; 2012; 50(6):954-8. PubMed ID: 22716000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal Interpolation for Environmental Modelling.
    Susanto F; de Souza P; He J
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27509497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring network design for phytoremediation systems using primary and secondary data sources.
    Gopalakrishnan G; Minsker BS; Valocchi AJ
    Environ Sci Technol; 2011 Jun; 45(11):4846-53. PubMed ID: 21557573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coverage methods for early groundwater contamination detection.
    Nunes LM; da Conceição Cunha M; Ribeiro L
    Bull Environ Contam Toxicol; 2013 May; 90(5):531-6. PubMed ID: 23435904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal groundwater contamination monitoring using pumping wells.
    Shlomi S; Ostfeld A; Rubin H; Shoemaker C
    Water Sci Technol; 2010; 62(3):556-69. PubMed ID: 20706003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial variability of shallow groundwater level, electrical conductivity and nitrate concentration, and risk assessment of nitrate contamination in North China Plain.
    Hu K; Huang Y; Li H; Li B; Chen D; White RE
    Environ Int; 2005 Aug; 31(6):896-903. PubMed ID: 16005970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-occurrence of 1,4-dioxane with trichloroethylene in chlorinated solvent groundwater plumes at US Air Force installations: Fact or fiction.
    Anderson RH; Anderson JK; Bower PA
    Integr Environ Assess Manag; 2012 Oct; 8(4):731-7. PubMed ID: 22492728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bayesian maximum entropy-based methodology for optimal spatiotemporal design of groundwater monitoring networks.
    Hosseini M; Kerachian R
    Environ Monit Assess; 2017 Sep; 189(9):433. PubMed ID: 28779429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of strategies for performance monitoring of groundwater contamination at sites underlain by fractured bedrock.
    Chen Y; Smith L; Beckie R
    J Contam Hydrol; 2012 Jun; 134-135():37-53. PubMed ID: 22579666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of on-line river water quality monitoring systems using the entropy theory: a case study.
    Karamouz M; Nokhandan AK; Kerachian R; Maksimovic C
    Environ Monit Assess; 2009 Aug; 155(1-4):63-81. PubMed ID: 18663591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of groundwater contamination in an urban area using integral pumping tests.
    Bauer S; Bayer-Raich M; Holder T; Kolesar C; Müller D; Ptak T
    J Contam Hydrol; 2004 Dec; 75(3-4):183-213. PubMed ID: 15610900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fifteen-year assessment of a permeable reactive barrier for treatment of chromate and trichloroethylene in groundwater.
    Wilkin RT; Acree SD; Ross RR; Puls RW; Lee TR; Woods LL
    Sci Total Environ; 2014 Jan; 468-469():186-94. PubMed ID: 24021639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vulnerability and risk evaluation of agricultural nitrogen pollution for Hungary's main aquifer using DRASTIC and GLEAMS models.
    Leone A; Ripa MN; Uricchio V; Deák J; Vargay Z
    J Environ Manage; 2009 Jul; 90(10):2969-78. PubMed ID: 18054423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.