BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 19563678)

  • 1. Predicting protein-protein interactions in Arabidopsis thaliana through integration of orthology, gene ontology and co-expression.
    De Bodt S; Proost S; Vandepoele K; Rouzé P; Van de Peer Y
    BMC Genomics; 2009 Jun; 10():288. PubMed ID: 19563678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ThaleMine: A Warehouse for Arabidopsis Data Integration and Discovery.
    Krishnakumar V; Contrino S; Cheng CY; Belyaeva I; Ferlanti ES; Miller JR; Vaughn MW; Micklem G; Town CD; Chan AP
    Plant Cell Physiol; 2017 Jan; 58(1):e4. PubMed ID: 28013278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A kaleidoscopic view of the Arabidopsis core cell cycle interactome.
    Van Leene J; Boruc J; De Jaeger G; Russinova E; De Veylder L
    Trends Plant Sci; 2011 Mar; 16(3):141-50. PubMed ID: 21233003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The predicted Arabidopsis interactome resource and network topology-based systems biology analyses.
    Lin M; Zhou X; Shen X; Mao C; Chen X
    Plant Cell; 2011 Mar; 23(3):911-22. PubMed ID: 21441435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactome-wide prediction of protein-protein binding sites reveals effects of protein sequence variation in Arabidopsis thaliana.
    Leal Valentim F; Neven F; Boyen P; van Dijk AD
    PLoS One; 2012; 7(10):e47022. PubMed ID: 23077539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting whole genome protein interaction networks from primary sequence data in model and non-model organisms using ENTS.
    Rodgers-Melnick E; Culp M; DiFazio SP
    BMC Genomics; 2013 Sep; 14():608. PubMed ID: 24015873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of novel proteins involved in plant cell-wall synthesis based on protein-protein interaction data.
    Zhou C; Yin Y; Dam P; Xu Y
    J Proteome Res; 2010 Oct; 9(10):5025-37. PubMed ID: 20687615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for network evolution in an Arabidopsis interactome map.
    Arabidopsis Interactome Mapping Consortium
    Science; 2011 Jul; 333(6042):601-7. PubMed ID: 21798944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arabidopsis bioinformatics: tools and strategies.
    Cantó-Pastor A; Mason GA; Brady SM; Provart NJ
    Plant J; 2021 Dec; 108(6):1585-1596. PubMed ID: 34695270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated approach (CLuster Analysis Integration Method) to combine expression data and protein-protein interaction networks in agrigenomics: application on Arabidopsis thaliana.
    Santoni D; Swiercz A; Zmieńko A; Kasprzak M; Blazewicz M; Bertolazzi P; Felici G
    OMICS; 2014 Feb; 18(2):155-65. PubMed ID: 24404838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global protein interactome exploration through mining genome-scale data in Arabidopsis thaliana.
    Xu F; Li G; Zhao C; Li Y; Li P; Cui J; Deng Y; Shi T
    BMC Genomics; 2010 Nov; 11 Suppl 2(Suppl 2):S2. PubMed ID: 21047383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AtPID: Arabidopsis thaliana protein interactome database--an integrative platform for plant systems biology.
    Cui J; Li P; Li G; Xu F; Zhao C; Li Y; Yang Z; Wang G; Yu Q; Li Y; Shi T
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D999-1008. PubMed ID: 17962307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-omics network-based functional annotation of unknown Arabidopsis genes.
    Depuydt T; Vandepoele K
    Plant J; 2021 Nov; 108(4):1193-1212. PubMed ID: 34562334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The potential of text mining in data integration and network biology for plant research: a case study on Arabidopsis.
    Van Landeghem S; De Bodt S; Drebert ZJ; Inzé D; Van de Peer Y
    Plant Cell; 2013 Mar; 25(3):794-807. PubMed ID: 23532071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analyses of stress-responsive genes in Arabidopsis thaliana: insight from genomic data mining, functional enrichment, pathway analysis and phenomics.
    Naika M; Shameer K; Sowdhamini R
    Mol Biosyst; 2013 Jul; 9(7):1888-908. PubMed ID: 23645342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A framework of integrating gene relations from heterogeneous data sources: an experiment on Arabidopsis thaliana.
    Li J; Li X; Su H; Chen H; Galbraith DW
    Bioinformatics; 2006 Aug; 22(16):2037-43. PubMed ID: 16820427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical assessment and performance improvement of plant-pathogen protein-protein interaction prediction methods.
    Yang S; Li H; He H; Zhou Y; Zhang Z
    Brief Bioinform; 2019 Jan; 20(1):274-287. PubMed ID: 29028906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic prediction of autophagy-related proteins using Arabidopsis thaliana interactome data.
    Cheng L; Zeng Y; Hu S; Zhang N; Cheung KCP; Li B; Leung KS; Jiang L
    Plant J; 2021 Feb; 105(3):708-720. PubMed ID: 33128829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A predicted interactome for Arabidopsis.
    Geisler-Lee J; O'Toole N; Ammar R; Provart NJ; Millar AH; Geisler M
    Plant Physiol; 2007 Oct; 145(2):317-29. PubMed ID: 17675552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide computational function prediction of Arabidopsis proteins by integration of multiple data sources.
    Kourmpetis YA; van Dijk AD; van Ham RC; ter Braak CJ
    Plant Physiol; 2011 Jan; 155(1):271-81. PubMed ID: 21098674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.