These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 19563742)

  • 1. Threshold dynamics in a time-delayed epidemic model with dispersal.
    White MC; Zhao XQ
    Math Biosci; 2009 Apr; 218(2):121-9. PubMed ID: 19563742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An epidemic model in a patchy environment.
    Wang W; Zhao XQ
    Math Biosci; 2004 Jul; 190(1):97-112. PubMed ID: 15172805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling disease spread in dispersal networks at two levels.
    Xiao Y; Zhou Y; Tang S
    Math Med Biol; 2011 Sep; 28(3):227-44. PubMed ID: 20439307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of group mixing on disease dynamics.
    van den Driessche P; Wang L; Zou X
    Math Biosci; 2010 Nov; 228(1):71-7. PubMed ID: 20801132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability and bifurcations in an epidemic model with varying immunity period.
    Blyuss KB; Kyrychko YN
    Bull Math Biol; 2010 Feb; 72(2):490-505. PubMed ID: 19898905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epidemic models with heterogeneous mixing and treatment.
    Brauer F
    Bull Math Biol; 2008 Oct; 70(7):1869-85. PubMed ID: 18663538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fully coupled, mechanistic model for infectious disease dynamics in a metapopulation: movement and epidemic duration.
    Jesse M; Ezanno P; Davis S; Heesterbeek JA
    J Theor Biol; 2008 Sep; 254(2):331-8. PubMed ID: 18577388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joint estimation of the basic reproduction number and generation time parameters for infectious disease outbreaks.
    Griffin JT; Garske T; Ghani AC; Clarke PS
    Biostatistics; 2011 Apr; 12(2):303-12. PubMed ID: 20858771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multi-species epidemic model with spatial dynamics.
    Arino J; Davis JR; Hartley D; Jordan R; Miller JM; van den Driessche P
    Math Med Biol; 2005 Jun; 22(2):129-42. PubMed ID: 15778332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global stability of an epidemic model with delay and general nonlinear incidence.
    McCluskey CC
    Math Biosci Eng; 2010 Oct; 7(4):837-50. PubMed ID: 21077711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An application of queuing theory to SIS and SEIS epidemic models.
    Hernandez-Suarez CM; Castillo-Chavez C; Lopez OM; Hernandez-Cuevas K
    Math Biosci Eng; 2010 Oct; 7(4):809-23. PubMed ID: 21077709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of an SIS reaction-diffusion epidemic model for disease transmission.
    Huang W; Han M; Liu K
    Math Biosci Eng; 2010 Jan; 7(1):51-66. PubMed ID: 20104948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An SIS patch model with variable transmission coefficients.
    Gao D; Ruan S
    Math Biosci; 2011 Aug; 232(2):110-5. PubMed ID: 21619886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of indirectly transmitted infectious diseases with immunological threshold.
    Joh RI; Wang H; Weiss H; Weitz JS
    Bull Math Biol; 2009 May; 71(4):845-62. PubMed ID: 19096894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of SIR epidemic models with nonlinear incidence rate and treatment.
    Hu Z; Ma W; Ruan S
    Math Biosci; 2012 Jul; 238(1):12-20. PubMed ID: 22516532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of infection rate and migration on extinction of disease in spatial epidemics.
    Sun GQ; Liu QX; Jin Z; Chakraborty A; Li BL
    J Theor Biol; 2010 May; 264(1):95-103. PubMed ID: 20085769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal treatment of an SIR epidemic model with time delay.
    Zaman G; Kang YH; Jung IH
    Biosystems; 2009 Oct; 98(1):43-50. PubMed ID: 19464340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Periodic matrix population models: growth rate, basic reproduction number, and entropy.
    Bacaër N
    Bull Math Biol; 2009 Oct; 71(7):1781-92. PubMed ID: 19412636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of a stochastic SIR epidemic on a random network incorporating household structure.
    Ball F; Sirl D; Trapman P
    Math Biosci; 2010 Apr; 224(2):53-73. PubMed ID: 20005881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contact rate calculation for a basic epidemic model.
    Rhodes CJ; Anderson RM
    Math Biosci; 2008 Nov; 216(1):56-62. PubMed ID: 18783724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.