BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

579 related articles for article (PubMed ID: 19563767)

  • 21. Liposome-mediated enhancement of the sensitivity in immunoassay based on surface-enhanced Raman scattering at gold nanosphere array substrate.
    Liu X; Huan S; Bu Y; Shen G; Yu R
    Talanta; 2008 May; 75(3):797-803. PubMed ID: 18585149
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-assembly of lambda-DNA networks/Ag nanoparticles: hybrid architecture and active-SERS substrate.
    Peng C; Song Y; Wei G; Zhang W; Li Z; Dong WF
    J Colloid Interface Sci; 2008 Jan; 317(1):183-90. PubMed ID: 17931640
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Net-like assembly of Au nanoparticles as a highly active substrate for surface-enhanced Raman and infrared spectroscopy.
    Luo Z; Yang W; Peng A; Ma Y; Fu H; Yao J
    J Phys Chem A; 2009 Mar; 113(11):2467-72. PubMed ID: 19216546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface-enhanced vibrational microspectroscopy of fulvic acid micelles.
    Alvarez-Puebla RA; Garrido JJ; Aroca RF
    Anal Chem; 2004 Dec; 76(23):7118-25. PubMed ID: 15571368
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlled growth and positioning of metal nanoparticles via scanning probe microscopy.
    Silva-Pinto E; Gomes AP; Pinheiro CB; Ladeira LO; Pimenta MA; Neves BR
    Langmuir; 2009 Apr; 25(6):3356-8. PubMed ID: 19708234
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detection of chronic lymphocytic leukemia cell surface markers using surface enhanced Raman scattering gold nanoparticles.
    Nguyen CT; Nguyen JT; Rutledge S; Zhang J; Wang C; Walker GC
    Cancer Lett; 2010 Jun; 292(1):91-7. PubMed ID: 20042272
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A heterogeneous PNA-based SERS method for DNA detection.
    Fabris L; Dante M; Braun G; Lee SJ; Reich NO; Moskovits M; Nguyen TQ; Bazan GC
    J Am Chem Soc; 2007 May; 129(19):6086-7. PubMed ID: 17451246
    [No Abstract]   [Full Text] [Related]  

  • 28. Detection of alkaline phosphatase using surface-enhanced Raman spectroscopy.
    Ruan C; Wang W; Gu B
    Anal Chem; 2006 May; 78(10):3379-84. PubMed ID: 16689540
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoscale structural analysis using tip-enhanced Raman spectroscopy.
    Deckert-Gaudig T; Deckert V
    Curr Opin Chem Biol; 2011 Oct; 15(5):719-24. PubMed ID: 21775192
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An optofluidic device for surface enhanced Raman spectroscopy.
    Wang M; Jing N; Chou IH; Cote GL; Kameoka J
    Lab Chip; 2007 May; 7(5):630-2. PubMed ID: 17476383
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Surface enhanced Raman spectroscopic study on the gold-labeled protein self-assembled surface].
    Chao KF; Zhang YL; Kong XG; Feng LY; Li B; Zeng QH; Song K; Sun YJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Sep; 27(9):1757-60. PubMed ID: 18051523
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biological pH sensing based on surface enhanced Raman scattering through a 2-aminothiophenol-silver probe.
    Wang Z; Bonoiu A; Samoc M; Cui Y; Prasad PN
    Biosens Bioelectron; 2008 Jan; 23(6):886-91. PubMed ID: 17996441
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sub-attomolar HIV-1 DNA detection using surface-enhanced Raman spectroscopy.
    Hu J; Zheng PC; Jiang JH; Shen GL; Yu RQ; Liu GK
    Analyst; 2010 May; 135(5):1084-9. PubMed ID: 20419260
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gold nanoparticles doped conducting polymer nanorod electrodes: ferrocene catalyzed aptamer-based thrombin immunosensor.
    Rahman MA; Son JI; Won MS; Shim YB
    Anal Chem; 2009 Aug; 81(16):6604-11. PubMed ID: 20337374
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SERS microscopy: nanoparticle probes and biomedical applications.
    Schlücker S
    Chemphyschem; 2009 Jul; 10(9-10):1344-54. PubMed ID: 19565576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rolling-circle amplification detection of thrombin using surface-enhanced Raman spectroscopy with core-shell nanoparticle probe.
    Li X; Wang L; Li C
    Chemistry; 2015 Apr; 21(18):6817-22. PubMed ID: 25766032
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Routine femtogram-level chemical analyses using vibrational spectroscopy and self-cleaning scanning probe microscopy tips.
    Park K; Lee J; Bhargava R; King WP
    Anal Chem; 2008 May; 80(9):3221-8. PubMed ID: 18366192
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transfer printing of metal nanoparticles with controllable dimensions, placement, and reproducible surface-enhanced Raman scattering effects.
    Xue M; Zhang Z; Zhu N; Wang F; Zhao XS; Cao T
    Langmuir; 2009 Apr; 25(8):4347-51. PubMed ID: 19320428
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microarray based Raman spectroscopic detection with gold nanoparticle probes.
    Li T; Guo L; Wang Z
    Biosens Bioelectron; 2008 Feb; 23(7):1125-30. PubMed ID: 18068972
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimized immobilization of gold nanoparticles on planar surfaces through alkyldithiols and their use to build 3D biosensors.
    Morel AL; Volmant RM; Méthivier C; Krafft JM; Boujday S; Pradier CM
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):304-12. PubMed ID: 20692817
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.