These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
409 related articles for article (PubMed ID: 19563811)
1. Structure-function studies of a Melanocarpus albomyces laccase suggest a pathway for oxidation of phenolic compounds. Kallio JP; Auer S; Jänis J; Andberg M; Kruus K; Rouvinen J; Koivula A; Hakulinen N J Mol Biol; 2009 Oct; 392(4):895-909. PubMed ID: 19563811 [TBL] [Abstract][Full Text] [Related]
2. A crystallographic and spectroscopic study on the effect of X-ray radiation on the crystal structure of Melanocarpus albomyces laccase. Hakulinen N; Kruus K; Koivula A; Rouvinen J Biochem Biophys Res Commun; 2006 Dec; 350(4):929-34. PubMed ID: 17045575 [TBL] [Abstract][Full Text] [Related]
3. A near atomic resolution structure of a Melanocarpus albomyces laccase. Hakulinen N; Andberg M; Kallio J; Koivula A; Kruus K; Rouvinen J J Struct Biol; 2008 Apr; 162(1):29-39. PubMed ID: 18249560 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Hakulinen N; Kiiskinen LL; Kruus K; Saloheimo M; Paananen A; Koivula A; Rouvinen J Nat Struct Biol; 2002 Aug; 9(8):601-5. PubMed ID: 12118243 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of an ascomycete fungal laccase from Thielavia arenaria--common structural features of asco-laccases. Kallio JP; Gasparetti C; Andberg M; Boer H; Koivula A; Kruus K; Rouvinen J; Hakulinen N FEBS J; 2011 Jul; 278(13):2283-95. PubMed ID: 21535408 [TBL] [Abstract][Full Text] [Related]
6. Probing the dioxygen route in Melanocarpus albomyces laccase with pressurized xenon gas. Kallio JP; Rouvinen J; Kruus K; Hakulinen N Biochemistry; 2011 May; 50(21):4396-8. PubMed ID: 21524088 [TBL] [Abstract][Full Text] [Related]
7. The structure of Rigidoporus lignosus Laccase containing a full complement of copper ions, reveals an asymmetrical arrangement for the T3 copper pair. Garavaglia S; Cambria MT; Miglio M; Ragusa S; Iacobazzi V; Palmieri F; D'Ambrosio C; Scaloni A; Rizzi M J Mol Biol; 2004 Oct; 342(5):1519-31. PubMed ID: 15364578 [TBL] [Abstract][Full Text] [Related]
8. Essential role of the C-terminus in Melanocarpus albomyces laccase for enzyme production, catalytic properties and structure. Andberg M; Hakulinen N; Auer S; Saloheimo M; Koivula A; Rouvinen J; Kruus K FEBS J; 2009 Nov; 276(21):6285-300. PubMed ID: 19780817 [TBL] [Abstract][Full Text] [Related]
9. Laccase from Melanocarpus albomyces binds effectively to cellulose. Kiiskinen LL; Palonen H; Linder M; Viikari L; Kruus K FEBS Lett; 2004 Oct; 576(1-2):251-5. PubMed ID: 15474046 [TBL] [Abstract][Full Text] [Related]
10. An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates. Tadesse MA; D'Annibale A; Galli C; Gentili P; Sergi F Org Biomol Chem; 2008 Mar; 6(5):868-78. PubMed ID: 18292878 [TBL] [Abstract][Full Text] [Related]
11. Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Sakurai T; Kataoka K Chem Rec; 2007; 7(4):220-9. PubMed ID: 17663447 [TBL] [Abstract][Full Text] [Related]
12. Purification and characterisation of a novel laccase from the ascomycete Melanocarpus albomyces. Kiiskinen LL; Viikari L; Kruus K Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):198-204. PubMed ID: 12111146 [TBL] [Abstract][Full Text] [Related]
13. The role of Glu498 in the dioxygen reactivity of CotA-laccase from Bacillus subtilis. Chen Z; Durão P; Silva CS; Pereira MM; Todorovic S; Hildebrandt P; Bento I; Lindley PF; Martins LO Dalton Trans; 2010 Mar; 39(11):2875-82. PubMed ID: 20200715 [TBL] [Abstract][Full Text] [Related]
14. Crystal structures of E. coli laccase CueO at different copper concentrations. Li X; Wei Z; Zhang M; Peng X; Yu G; Teng M; Gong W Biochem Biophys Res Commun; 2007 Mar; 354(1):21-6. PubMed ID: 17217912 [TBL] [Abstract][Full Text] [Related]
15. Comparative characterization of four laccases from Trametes versicolor concerning phenolic C-C coupling and oxidation of PAHs. Koschorreck K; Richter SM; Swierczek A; Beifuss U; Schmid RD; Urlacher VB Arch Biochem Biophys; 2008 Jun; 474(1):213-9. PubMed ID: 18367094 [TBL] [Abstract][Full Text] [Related]
16. How is the reactivity of laccase affected by single-point mutations? Engineering laccase for improved activity towards sterically demanding substrates. Galli C; Gentili P; Jolivalt C; Madzak C; Vadalà R Appl Microbiol Biotechnol; 2011 Jul; 91(1):123-31. PubMed ID: 21468703 [TBL] [Abstract][Full Text] [Related]
17. Crystal structures of the Met148Leu and Ser86Asp mutants of rusticyanin from Thiobacillus ferrooxidans: insights into the structural relationship with the cupredoxins and the multi copper proteins. Kanbi LD; Antonyuk S; Hough MA; Hall JF; Dodd FE; Hasnain SS J Mol Biol; 2002 Jul; 320(2):263-75. PubMed ID: 12079384 [TBL] [Abstract][Full Text] [Related]
18. On the reactions of two fungal laccases differing in their redox potential with lignin model compounds: products and their rate of formation. Lahtinen M; Kruus K; Heinonen P; Sipilä J J Agric Food Chem; 2009 Sep; 57(18):8357-65. PubMed ID: 19702333 [TBL] [Abstract][Full Text] [Related]
19. Concerted electron/proton transfer mechanism in the oxidation of phenols by laccase. Galli C; Madzak C; Vadalà R; Jolivalt C; Gentili P Chembiochem; 2013 Dec; 14(18):2500-5. PubMed ID: 24151197 [TBL] [Abstract][Full Text] [Related]
20. Proximal mutations at the type 1 copper site of CotA laccase: spectroscopic, redox, kinetic and structural characterization of I494A and L386A mutants. Durão P; Chen Z; Silva CS; Soares CM; Pereira MM; Todorovic S; Hildebrandt P; Bento I; Lindley PF; Martins LO Biochem J; 2008 Jun; 412(2):339-46. PubMed ID: 18307408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]