BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 19563868)

  • 1. Hypervariable 3' UTR region of plant LTR-retrotransposons as a source of novel satellite repeats.
    Macas J; Koblízková A; Navrátilová A; Neumann P
    Gene; 2009 Dec; 448(2):198-206. PubMed ID: 19563868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental evidence for splicing of intron-containing transcripts of plant LTR retrotransposon Ogre.
    Steinbauerová V; Neumann P; Macas J
    Mol Genet Genomics; 2008 Nov; 280(5):427-36. PubMed ID: 18762986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula.
    Macas J; Neumann P; Navrátilová A
    BMC Genomics; 2007 Nov; 8():427. PubMed ID: 18031571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies.
    Ambrozová K; Mandáková T; Bures P; Neumann P; Leitch IJ; Koblízková A; Macas J; Lysak MA
    Ann Bot; 2011 Feb; 107(2):255-68. PubMed ID: 21156758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly abundant pea LTR retrotransposon Ogre is constitutively transcribed and partially spliced.
    Neumann P; Pozárková D; Macas J
    Plant Mol Biol; 2003 Oct; 53(3):399-410. PubMed ID: 14750527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and evolution of Cyclops: a novel giant retrotransposon of the Ty3/Gypsy family highly amplified in pea and other legume species.
    Chavanne F; Zhang DX; Liaud MF; Cerff R
    Plant Mol Biol; 1998 May; 37(2):363-75. PubMed ID: 9617807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of repeat arrays in ultra-long nanopore reads reveals frequent origin of satellite DNA from retrotransposon-derived tandem repeats.
    Vondrak T; Ávila Robledillo L; Novák P; Koblížková A; Neumann P; Macas J
    Plant J; 2020 Jan; 101(2):484-500. PubMed ID: 31559657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PIGY, a new plant envelope-class LTR retrotransposon.
    Neumann P; Pozárková D; Koblízková A; Macas J
    Mol Genet Genomics; 2005 Mar; 273(1):43-53. PubMed ID: 15668770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide characterization of long terminal repeat -retrotransposons in apple reveals the differences in heterogeneity and copy number between Ty1-copia and Ty3-gypsy retrotransposons.
    Sun HY; Dai HY; Zhao GL; Ma Y; Ou CQ; Li H; Li LG; Zhang ZH
    J Integr Plant Biol; 2008 Sep; 50(9):1130-9. PubMed ID: 18844781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary conserved lineage of Angela-family retrotransposons as a genome-wide microsatellite repeat dispersal agent.
    Smýkal P; Kalendar R; Ford R; Macas J; Griga M
    Heredity (Edinb); 2009 Aug; 103(2):157-67. PubMed ID: 19384338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis.
    Zedek F; Smerda J; Smarda P; Bureš P
    BMC Plant Biol; 2010 Nov; 10():265. PubMed ID: 21118487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tandem repeats derived from centromeric retrotransposons.
    Sharma A; Wolfgruber TK; Presting GG
    BMC Genomics; 2013 Mar; 14():142. PubMed ID: 23452340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low coverage sequencing for repetitive DNA analysis in Passiflora edulis Sims: citogenomic characterization of transposable elements and satellite DNA.
    Pamponét VCC; Souza MM; Silva GS; Micheli F; de Melo CAF; de Oliveira SG; Costa EA; Corrêa RX
    BMC Genomics; 2019 Apr; 20(1):262. PubMed ID: 30940088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences.
    Gao L; McCarthy EM; Ganko EW; McDonald JF
    BMC Genomics; 2004 Mar; 5(1):18. PubMed ID: 15040813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and cytogenetic analysis of repetitive DNA in pea (pisum sativum L.).
    Neumann P; Nouzová M; Macas J
    Genome; 2001 Aug; 44(4):716-28. PubMed ID: 11550909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convergent evolution of ribonuclease h in LTR retrotransposons and retroviruses.
    Ustyantsev K; Novikova O; Blinov A; Smyshlyaev G
    Mol Biol Evol; 2015 May; 32(5):1197-207. PubMed ID: 25605791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An 82 bp tandem repeat family typical of 3' non-coding end of Gypsy/TAT LTR retrotransposons is conserved in
    Cintra LA; Souza TB; Parteka LM; Barreto LM; Pereira LFP; Gaeta ML; Guyot R; Vanzela ALL
    Genome; 2022 Mar; 65(3):137-151. PubMed ID: 34727516
    [No Abstract]   [Full Text] [Related]  

  • 18. Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison.
    Du J; Tian Z; Hans CS; Laten HM; Cannon SB; Jackson SA; Shoemaker RC; Ma J
    Plant J; 2010 Aug; 63(4):584-98. PubMed ID: 20525006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A widespread occurrence of extra open reading frames in plant Ty3/gypsy retrotransposons.
    Steinbauerová V; Neumann P; Novák P; Macas J
    Genetica; 2011 Dec; 139(11-12):1543-55. PubMed ID: 22544262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sobo, a recently amplified satellite repeat of potato, and its implications for the origin of tandemly repeated sequences.
    Tek AL; Song J; Macas J; Jiang J
    Genetics; 2005 Jul; 170(3):1231-8. PubMed ID: 15911575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.