BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 19563922)

  • 1. Impact of co-incorporating laminin peptide dopants and neurotrophic growth factors on conducting polymer properties.
    Green RA; Lovell NH; Poole-Warren LA
    Acta Biomater; 2010 Jan; 6(1):63-71. PubMed ID: 19563922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell attachment functionality of bioactive conducting polymers for neural interfaces.
    Green RA; Lovell NH; Poole-Warren LA
    Biomaterials; 2009 Aug; 30(22):3637-44. PubMed ID: 19375160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biofunctionalization of PEDOT films with laminin-derived peptides.
    Bhagwat N; Murray RE; Shah SI; Kiick KL; Martin DC
    Acta Biomater; 2016 Sep; 41():235-46. PubMed ID: 27181880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and characterization of conductive poly (3,4-ethylenedioxythiophene) doped with hyaluronic acid/poly (l-lactic acid) composite film for biomedical application.
    Wang S; Guan S; Wang J; Liu H; Liu T; Ma X; Cui Z
    J Biosci Bioeng; 2017 Jan; 123(1):116-125. PubMed ID: 27498308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of dopants on the biomechanical properties of conducting polymer films on platinum electrodes.
    Baek S; Green RA; Poole-Warren LA
    J Biomed Mater Res A; 2014 Aug; 102(8):2743-54. PubMed ID: 24027227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate dependent stability of conducting polymer coatings on medical electrodes.
    Green RA; Hassarati RT; Bouchinet L; Lee CS; Cheong GL; Yu JF; Dodds CW; Suaning GJ; Poole-Warren LA; Lovell NH
    Biomaterials; 2012 Sep; 33(25):5875-86. PubMed ID: 22656446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic poly(serinol hexamethylene urea) for promotion of neurite outgrowth and guidance.
    Yun D; Famili A; Lee YM; Jenkins PM; Freed CR; Park D
    J Biomater Sci Polym Ed; 2014; 25(4):354-69. PubMed ID: 24279744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The biological and electrical trade-offs related to the thickness of conducting polymers for neural applications.
    Baek S; Green RA; Poole-Warren LA
    Acta Biomater; 2014 Jul; 10(7):3048-58. PubMed ID: 24726957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nerve growth factor-immobilized polypyrrole: bioactive electrically conducting polymer for enhanced neurite extension.
    Gomez N; Schmidt CE
    J Biomed Mater Res A; 2007 Apr; 81(1):135-49. PubMed ID: 17111407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polypyrrole doped with 2 peptide sequences from laminin.
    Stauffer WR; Cui XT
    Biomaterials; 2006 Apr; 27(11):2405-13. PubMed ID: 16343612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ordered surfactant-templated poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer on microfabricated neural probes.
    Yang J; Kim DH; Hendricks JL; Leach M; Northey R; Martin DC
    Acta Biomater; 2005 Jan; 1(1):125-36. PubMed ID: 16701786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporation of a clot-binding peptide into polythiophene: properties of composites for biomedical applications.
    Fabregat G; Teixeira-Dias B; del Valle LJ; Armelin E; Estrany F; Alemán C
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):11940-54. PubMed ID: 25069384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation of collagen in poly(3,4-ethylenedioxythiophene) for a bifunctional film with high bio- and electrochemical activity.
    Xiao Y; Li CM; Wang S; Shi J; Ooi CP
    J Biomed Mater Res A; 2010 Feb; 92(2):766-72. PubMed ID: 19274716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PEDOT doped with algal, mammalian and synthetic dopants: polymer properties, protein and cell interactions, and influence of electrical stimulation on neuronal cell differentiation.
    Molino PJ; Garcia L; Stewart EM; Lamaze M; Zhang B; Harris AR; Winberg P; Wallace GG
    Biomater Sci; 2018 May; 6(5):1250-1261. PubMed ID: 29589843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical fabrication of conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) nanofibrils on microfabricated neural prosthetic devices.
    Yang J; Lipkin K; Martin DC
    J Biomater Sci Polym Ed; 2007; 18(8):1075-89. PubMed ID: 17705999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface modification of neural probes with conducting polymer poly(hydroxymethylated-3,4- ethylenedioxythiophene) and its biocompatibility.
    Xiao Y; Martin DC; Cui X; Shenai M
    Appl Biochem Biotechnol; 2006 Feb; 128(2):117-30. PubMed ID: 16484721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical polymerization of conducting polymers in living neural tissue.
    Richardson-Burns SM; Hendricks JL; Martin DC
    J Neural Eng; 2007 Jun; 4(2):L6-L13. PubMed ID: 17409471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mesoporous silica nanosphere-based drug delivery system using an electrically conducting polymer.
    Cho Y; Shi R; Ivanisevic A; Ben Borgens R
    Nanotechnology; 2009 Jul; 20(27):275102. PubMed ID: 19528680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly stable carbon nanotube doped poly(3,4-ethylenedioxythiophene) for chronic neural stimulation.
    Luo X; Weaver CL; Zhou DD; Greenberg R; Cui XT
    Biomaterials; 2011 Aug; 32(24):5551-7. PubMed ID: 21601278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(3,4-ethylenedioxythiophene):GlycosAminoGlycan Aqueous Dispersions: Toward Electrically Conductive Bioactive Materials for Neural Interfaces.
    Mantione D; Del Agua I; Schaafsma W; Diez-Garcia J; Castro B; Sardon H; Mecerreyes D
    Macromol Biosci; 2016 Aug; 16(8):1227-38. PubMed ID: 27168277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.