BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 19564890)

  • 21. Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2.
    Ralston A; Cox BJ; Nishioka N; Sasaki H; Chea E; Rugg-Gunn P; Guo G; Robson P; Draper JS; Rossant J
    Development; 2010 Feb; 137(3):395-403. PubMed ID: 20081188
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aberrant expression patterns of genes involved in segregation of inner cell mass and trophectoderm lineages in bovine embryos derived from somatic cell nuclear transfer.
    Fujii T; Moriyasu S; Hirayama H; Hashizume T; Sawai K
    Cell Reprogram; 2010 Oct; 12(5):617-25. PubMed ID: 20726774
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanog is required for primitive endoderm formation through a non-cell autonomous mechanism.
    Messerschmidt DM; Kemler R
    Dev Biol; 2010 Aug; 344(1):129-37. PubMed ID: 20435031
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A genetic and developmental pathway from STAT3 to the OCT4-NANOG circuit is essential for maintenance of ICM lineages in vivo.
    Do DV; Ueda J; Messerschmidt DM; Lorthongpanich C; Zhou Y; Feng B; Guo G; Lin PJ; Hossain MZ; Zhang W; Moh A; Wu Q; Robson P; Ng HH; Poellinger L; Knowles BB; Solter D; Fu XY
    Genes Dev; 2013 Jun; 27(12):1378-90. PubMed ID: 23788624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of SOX2 in maintaining pluripotency of human embryonic stem cells.
    Adachi K; Suemori H; Yasuda SY; Nakatsuji N; Kawase E
    Genes Cells; 2010 May; 15(5):455-70. PubMed ID: 20384793
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Klf5 regulates lineage formation in the pre-implantation mouse embryo.
    Lin SC; Wani MA; Whitsett JA; Wells JM
    Development; 2010 Dec; 137(23):3953-63. PubMed ID: 20980403
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Necessity of OCT-4 and CDX2 for Early Development and Gene Expression Involved in Differentiation of Inner Cell Mass and Trophectoderm Lineages in Bovine Embryos.
    Sakurai N; Takahashi K; Emura N; Fujii T; Hirayama H; Kageyama S; Hashizume T; Sawai K
    Cell Reprogram; 2016 Oct; 18(5):309-318. PubMed ID: 27500421
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Trophectoderm lineage determination in cattle.
    Berg DK; Smith CS; Pearton DJ; Wells DN; Broadhurst R; Donnison M; Pfeffer PL
    Dev Cell; 2011 Feb; 20(2):244-55. PubMed ID: 21316591
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Oct4-Sall4-Nanog network controls developmental progression in the pre-implantation mouse embryo.
    Tan MH; Au KF; Leong DE; Foygel K; Wong WH; Yao MW
    Mol Syst Biol; 2013; 9():632. PubMed ID: 23295861
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gelatin induces trophectoderm differentiation of mouse embryonic stem cells.
    Peng S; Hua J; Cao X; Wang H
    Cell Biol Int; 2011 Jun; 35(6):587-91. PubMed ID: 21091439
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanog co-regulated by Nodal/Smad2 and Oct4 is required for pluripotency in developing mouse epiblast.
    Sun LT; Yamaguchi S; Hirano K; Ichisaka T; Kuroda T; Tada T
    Dev Biol; 2014 Aug; 392(2):182-92. PubMed ID: 24929238
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differences in early lineage segregation between mammals.
    Kuijk EW; Du Puy L; Van Tol HT; Oei CH; Haagsman HP; Colenbrander B; Roelen BA
    Dev Dyn; 2008 Apr; 237(4):918-27. PubMed ID: 18330925
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Methylation profile of the promoters of Nanog and Oct4 in ICSI human embryos.
    Al-Khtib M; Blachère T; Guérin JF; Lefèvre A
    Hum Reprod; 2012 Oct; 27(10):2948-54. PubMed ID: 22914767
    [TBL] [Abstract][Full Text] [Related]  

  • 34. BRG1 Governs Nanog Transcription in Early Mouse Embryos and Embryonic Stem Cells via Antagonism of Histone H3 Lysine 9/14 Acetylation.
    Carey TS; Cao Z; Choi I; Ganguly A; Wilson CA; Paul S; Knott JG
    Mol Cell Biol; 2015 Dec; 35(24):4158-69. PubMed ID: 26416882
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sox2 is the faithful marker for pluripotency in pig: evidence from embryonic studies.
    Liu S; Bou G; Sun R; Guo S; Xue B; Wei R; Cooney AJ; Liu Z
    Dev Dyn; 2015 Apr; 244(4):619-27. PubMed ID: 25619399
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reprogramming of Extraembryonic Trophoblast Stem Cells into Embryonic Pluripotent State by Fusion with Embryonic Stem Cells.
    Hong YJ; Hong K; Byun S; Choi HW; Do JT
    Stem Cells Dev; 2018 Oct; 27(19):1350-1359. PubMed ID: 29993328
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Early preimplantation cells expressing Cdx2 exhibit plasticity of specification to TE and ICM lineages through positional changes.
    Toyooka Y; Oka S; Fujimori T
    Dev Biol; 2016 Mar; 411(1):50-60. PubMed ID: 26806703
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Developmental expression of pluripotency determining factors in caprine embryos: novel pattern of NANOG protein localization in the nucleolus.
    He S; Pant D; Schiffmacher A; Bischoff S; Melican D; Gavin W; Keefer C
    Mol Reprod Dev; 2006 Dec; 73(12):1512-22. PubMed ID: 16894532
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The origins of human embryonic stem cells: a biological conundrum.
    Brink TC; Sudheer S; Janke D; Jagodzinska J; Jung M; Adjaye J
    Cells Tissues Organs; 2008; 188(1-2):9-22. PubMed ID: 18160822
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oct4 is required for lineage priming in the developing inner cell mass of the mouse blastocyst.
    Le Bin GC; Muñoz-Descalzo S; Kurowski A; Leitch H; Lou X; Mansfield W; Etienne-Dumeau C; Grabole N; Mulas C; Niwa H; Hadjantonakis AK; Nichols J
    Development; 2014 Mar; 141(5):1001-10. PubMed ID: 24504341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.