These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 19565615)

  • 1. Cell fate transitions during stomatal development.
    Serna L
    Bioessays; 2009 Aug; 31(8):865-73. PubMed ID: 19565615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of the peptides Stomagen, EPF1 and EPF2 on activation of MAP kinase MPK6 and the SPCH protein level.
    Jewaria PK; Hara T; Tanaka H; Kondo T; Betsuyaku S; Sawa S; Sakagami Y; Aimoto S; Kakimoto T
    Plant Cell Physiol; 2013 Aug; 54(8):1253-62. PubMed ID: 23686240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stomatal patterning and development.
    Dong J; Bergmann DC
    Curr Top Dev Biol; 2010; 91():267-97. PubMed ID: 20705185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Termination of asymmetric cell division and differentiation of stomata.
    Pillitteri LJ; Sloan DB; Bogenschutz NL; Torii KU
    Nature; 2007 Feb; 445(7127):501-5. PubMed ID: 17183267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arabidopsis stomatal initiation is controlled by MAPK-mediated regulation of the bHLH SPEECHLESS.
    Lampard GR; Macalister CA; Bergmann DC
    Science; 2008 Nov; 322(5904):1113-6. PubMed ID: 19008449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in Arabidopsis.
    Pillitteri LJ; Bogenschutz NL; Torii KU
    Plant Cell Physiol; 2008 Jun; 49(6):934-43. PubMed ID: 18450784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breaking the silence: three bHLH proteins direct cell-fate decisions during stomatal development.
    Pillitteri LJ; Torii KU
    Bioessays; 2007 Sep; 29(9):861-70. PubMed ID: 17691100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organ-specific effects of brassinosteroids on stomatal production coordinate with the action of Too Many Mouths.
    Wang M; Yang K; Le J
    J Integr Plant Biol; 2015 Mar; 57(3):247-55. PubMed ID: 25234048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stomatal development in Arabidopsis and grasses: differences and commonalities.
    Serna L
    Int J Dev Biol; 2011; 55(1):5-10. PubMed ID: 21425077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional specification of stomatal production by the putative ligand CHALLAH.
    Abrash EB; Bergmann DC
    Development; 2010 Feb; 137(3):447-55. PubMed ID: 20056678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The MAPK substrate MASS proteins regulate stomatal development in Arabidopsis.
    Xue X; Bian C; Guo X; Di R; Dong J
    PLoS Genet; 2020 Apr; 16(4):e1008706. PubMed ID: 32240168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. YODA-HSP90 Module Regulates Phosphorylation-Dependent Inactivation of SPEECHLESS to Control Stomatal Development under Acute Heat Stress in Arabidopsis.
    Samakovli D; Tichá T; Vavrdová T; Ovečka M; Luptovčiak I; Zapletalová V; Kuchařová A; Křenek P; Krasylenko Y; Margaritopoulou T; Roka L; Milioni D; Komis G; Hatzopoulos P; Šamaj J
    Mol Plant; 2020 Apr; 13(4):612-633. PubMed ID: 31935463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orthologs of Arabidopsis thaliana stomatal bHLH genes and regulation of stomatal development in grasses.
    Liu T; Ohashi-Ito K; Bergmann DC
    Development; 2009 Jul; 136(13):2265-76. PubMed ID: 19502487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dysregulation of cell-to-cell connectivity and stomatal patterning by loss-of-function mutation in Arabidopsis chorus (glucan synthase-like 8).
    Guseman JM; Lee JS; Bogenschutz NL; Peterson KM; Virata RE; Xie B; Kanaoka MM; Hong Z; Torii KU
    Development; 2010 May; 137(10):1731-41. PubMed ID: 20430748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription factor control of asymmetric cell divisions that establish the stomatal lineage.
    MacAlister CA; Ohashi-Ito K; Bergmann DC
    Nature; 2007 Feb; 445(7127):537-40. PubMed ID: 17183265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mix-and-match: ligand-receptor pairs in stomatal development and beyond.
    Torii KU
    Trends Plant Sci; 2012 Dec; 17(12):711-9. PubMed ID: 22819466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves.
    Hara K; Yokoo T; Kajita R; Onishi T; Yahata S; Peterson KM; Torii KU; Kakimoto T
    Plant Cell Physiol; 2009 Jun; 50(6):1019-31. PubMed ID: 19435754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new loss-of-function allele 28y reveals a role of ARGONAUTE1 in limiting asymmetric division of stomatal lineage ground cell.
    Yang K; Jiang M; Le J
    J Integr Plant Biol; 2014 Jun; 56(6):539-49. PubMed ID: 24386951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Take a deep breath: peptide signalling in stomatal patterning and differentiation.
    Richardson LG; Torii KU
    J Exp Bot; 2013 Dec; 64(17):5243-51. PubMed ID: 23997204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TOO MANY MOUTHS promotes cell fate progression in stomatal development of Arabidopsis stems.
    Bhave NS; Veley KM; Nadeau JA; Lucas JR; Bhave SL; Sack FD
    Planta; 2009 Jan; 229(2):357-67. PubMed ID: 18979118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.