BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 19566126)

  • 1. Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics.
    Jackiewicz Z; Zubik-Kowal B; Basse B
    Math Biosci Eng; 2009 Jul; 6(3):561-72. PubMed ID: 19566126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A role for dipeptidyl peptidase IV in suppressing the malignant phenotype of melanocytic cells.
    Wesley UV; Albino AP; Tiwari S; Houghton AN
    J Exp Med; 1999 Aug; 190(3):311-22. PubMed ID: 10430620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophoresis simulations using Chebyshev pseudo-spectral method on a moving mesh.
    Bahga SS; Gupta P
    Electrophoresis; 2022 Mar; 43(5-6):688-695. PubMed ID: 34910828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grid cell distortion and MODFLOW's integrated finite-difference numerical solution.
    Romero DM; Silver SE
    Ground Water; 2006; 44(6):797-802. PubMed ID: 17087751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite difference approximations for a size-structured population model with distributed states in the recruitment.
    Ackleh AS; Farkas JZ; Li X; Ma B
    J Biol Dyn; 2015; 9 Suppl 1():2-31. PubMed ID: 24890735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite-difference schemes for reaction-diffusion equations modeling predator-prey interactions in MATLAB.
    Garvie MR
    Bull Math Biol; 2007 Apr; 69(3):931-56. PubMed ID: 17268759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consistent modeling of boundaries in acoustic finite-difference time-domain simulations.
    Häggblad J; Engquist B
    J Acoust Soc Am; 2012 Sep; 132(3):1303-10. PubMed ID: 22978858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of voxelization on finite difference time domain simulations of head-related transfer functions.
    Prepeliță S; Geronazzo M; Avanzini F; Savioja L
    J Acoust Soc Am; 2016 May; 139(5):2489. PubMed ID: 27250145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational efficiency of numerical approximations of tangent moduli for finite element implementation of a fiber-reinforced hyperelastic material model.
    Liu H; Sun W
    Comput Methods Biomech Biomed Engin; 2016; 19(11):1171-80. PubMed ID: 26692168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Cartesian coordinate finite difference simulations of small cylindrical objects.
    Chen ZP; Roemer RB
    J Biomech Eng; 1993 Feb; 115(1):119-21. PubMed ID: 8445889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulation of self-sustained oscillation of a voice-producing element based on Navier-Stokes equations and the finite element method.
    de Vries MP; Hamburg MC; Schutte HK; Verkerke GJ; Veldman AE
    J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):2077-83. PubMed ID: 12703718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3-D numerical modeling for axisymmetrical piezoelectric structures: application to high-frequency ultrasonic transducers.
    Filoux E; Callé S; Lou-Moeller R; Lethiecq M; Levassort F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1188-99. PubMed ID: 20442031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical solution of Maxwell equations by a finite-difference time-domain method in a medium with frequency and spatial dispersion.
    Potravkin NN; Perezhogin IA; Makarov VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056706. PubMed ID: 23214905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a melanoma progression antigen as integrin VLA-2.
    Klein CE; Steinmayer T; Kaufmann D; Weber L; Bröcker EB
    J Invest Dermatol; 1991 Feb; 96(2):281-4. PubMed ID: 1991990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computation of the acoustic radiation force using the finite-difference time-domain method.
    Cai F; Meng L; Jiang C; Pan Y; Zheng H
    J Acoust Soc Am; 2010 Oct; 128(4):1617-22. PubMed ID: 20968334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite-element neural networks for solving differential equations.
    Ramuhalli P; Udpa L; Udpa SS
    IEEE Trans Neural Netw; 2005 Nov; 16(6):1381-92. PubMed ID: 16342482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced growth factor requirements and accelerated cell-cycle kinetics in adult human melanocytes transformed with SV40 large T antigen.
    Zepter K; Häffner AC; Trefzer U; Elmets CA
    J Invest Dermatol; 1995 May; 104(5):755-62. PubMed ID: 7738353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antigens of melanocytes and melanoma.
    Lynch SA; Bouchard BN; Vijayasaradhi S; Yuasa H; Houghton AN
    Cancer Metastasis Rev; 1991 Jun; 10(2):141-50. PubMed ID: 1873854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cellular automata model of tumor-immune system interactions.
    Mallet DG; De Pillis LG
    J Theor Biol; 2006 Apr; 239(3):334-50. PubMed ID: 16169016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational techniques for solving the bidomain equations in three dimensions.
    Vigmond EJ; Aguel F; Trayanova NA
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1260-9. PubMed ID: 12450356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.