These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 19566205)

  • 1. A passive long-wavelength infrared microscope with a highly sensitive phototransistor.
    Kajihara Y; Komiyama S; Nickels P; Ueda T
    Rev Sci Instrum; 2009 Jun; 80(6):063702. PubMed ID: 19566205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A sensitive near-field microscope for thermal radiation.
    Kajihara Y; Kosaka K; Komiyama S
    Rev Sci Instrum; 2010 Mar; 81(3):033706. PubMed ID: 20370184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auto-Calibrated Charge-Sensitive Infrared Phototransistor at 9.3 µm.
    Bahrehmand M; Gacemi D; Vasanelli A; Li L; Davies AG; Linfield E; Sirtori C; Todorov Y
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high signal-to-noise ratio passive near-field microscope equipped with a helium-free cryostat.
    Lin KT; Komiyama S; Kim S; Kawamura KI; Kajihara Y
    Rev Sci Instrum; 2017 Jan; 88(1):013706. PubMed ID: 28147653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hot spots in energetic materials generated by infrared and ultrasound, detected by thermal imaging microscopy.
    Chen MW; You S; Suslick KS; Dlott DD
    Rev Sci Instrum; 2014 Feb; 85(2):023705. PubMed ID: 24593369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passive near-field imaging via grating-based spectroscopy.
    Sakuma R; Lin KT; Kim S; Kimura F; Kajihara Y
    Rev Sci Instrum; 2022 Jan; 93(1):013704. PubMed ID: 35104953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Note: Near-field imaging of thermal radiation at low temperatures by passive millimeter-wave microscopy.
    Nozokido T; Ishino M; Kudo H; Bae J
    Rev Sci Instrum; 2013 Mar; 84(3):036103. PubMed ID: 23556855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a cryogenic passive-scattering-type near-field optical microscopy system.
    Lin KT; Weng Q; Kim S; Komiyama S; Kajihara Y
    Rev Sci Instrum; 2023 Feb; 94(2):023701. PubMed ID: 36859006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel ultra-sensitive detectors in the 10-50 μm wavelength range.
    Ueda T; Komiyama S
    Sensors (Basel); 2010; 10(9):8411-23. PubMed ID: 22163662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Band-structure-engineered high-gain LWIR photodetector based on a type-II superlattice.
    Dehzangi A; Li J; Razeghi M
    Light Sci Appl; 2021 Jan; 10(1):17. PubMed ID: 33446630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scanning magnetic microscope system utilizing a magneto-impedance sensor for a nondestructive diagnostic tool of geological samples.
    Uehara M; Nakamura N
    Rev Sci Instrum; 2007 Apr; 78(4):043708. PubMed ID: 17477671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature measurement with an infrared microscope.
    Yoder JR
    Appl Opt; 1968 Sep; 7(9):1791-6. PubMed ID: 20068884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband lightweight flat lenses for long-wave infrared imaging.
    Meem M; Banerji S; Majumder A; Vasquez FG; Sensale-Rodriguez B; Menon R
    Proc Natl Acad Sci U S A; 2019 Oct; 116(43):21375-21378. PubMed ID: 31591227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging with neutral atoms: a new matter-wave microscope.
    Koch M; Rehbein S; Schmahl G; Reisinger T; Bracco G; Ernst WE; Holst B
    J Microsc; 2008 Jan; 229(Pt 1):1-5. PubMed ID: 18173637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional integral imaging and object detection using long-wave infrared imaging.
    Komatsu S; Markman A; Mahalanobis A; Chen K; Javidi B
    Appl Opt; 2017 Mar; 56(9):D120-D126. PubMed ID: 28375379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber-coupled LWIR hyperspectral sensor suite for non-contact component surface temperature measurements.
    Hsu PS; Rein K; Oleksandr B; Wu D; Cook TS; Adhikari S; Emerson B; Lieuwen T; Gord JR; Roy S
    Appl Opt; 2018 Dec; 57(36):10418-10425. PubMed ID: 30645393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High spatial resolution confocal microscope with independent excitation and detection scanning capabilities.
    Marcet S; Ouellet-Plamondon C; Francoeur S
    Rev Sci Instrum; 2009 Jun; 80(6):063101. PubMed ID: 19566190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. InGaP/GaAs heterojunction phototransistors transferred to a Si substrate by metal wafer bonding combined with epitaxial lift-off.
    Park MS; Geum DM; Kyhm JH; Song JD; Kim S; Choi WJ
    Opt Express; 2015 Oct; 23(21):26888-94. PubMed ID: 26480350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IR-Band Conversion of Target and Background Using Surface Temperature Estimation and Error Compensation for Military IR Sensor Simulation.
    Bae T; Kim Y; Ahn S
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31146375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing a confocal acoustic holography microscope for non-invasive 3D temperature and composition measurements.
    Herring RA; Jacquemin P; Sawicka BD; Atalick S
    Ultramicroscopy; 2009 Jun; 109(7):830-6. PubMed ID: 19375860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.