These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 19566218)

  • 21. Thermal conductivity measurement and interface thermal resistance estimation using SiO2 thin film.
    Chien HC; Yao DJ; Huang MJ; Chang TY
    Rev Sci Instrum; 2008 May; 79(5):054902. PubMed ID: 18513085
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measurement of the thermal conductivity of a water-based single-wall carbon nanotube colloidal suspension with a modified 3- omega method.
    Choi TY; Maneshian MH; Kang B; Chang WS; Han CS; Poulikakos D
    Nanotechnology; 2009 Aug; 20(31):315706. PubMed ID: 19597251
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermodynamic measurements of submilligram bulk samples using a membrane-based "calorimeter on a chip".
    Cooke DW; Michel KJ; Hellman F
    Rev Sci Instrum; 2008 May; 79(5):053902. PubMed ID: 18513074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal diffusivity measurements of thin plates and filaments using lock-in thermography.
    Mendioroz A; Fuente-Dacal R; ApiƱaniz E; Salazar A
    Rev Sci Instrum; 2009 Jul; 80(7):074904. PubMed ID: 19655974
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Note: Thermal conductivity measurement of individual poly(ether ketone)/carbon nanotube fibers using a steady-state dc thermal bridge method.
    Moon J; Weaver K; Feng B; Chae HG; Kumar S; Baek JB; Peterson GP
    Rev Sci Instrum; 2012 Jan; 83(1):016103. PubMed ID: 22299999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method.
    Li Q; Liu C; Wang X; Fan S
    Nanotechnology; 2009 Apr; 20(14):145702. PubMed ID: 19420532
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonequilibrium molecular dynamics calculation of the thermal conductivity based on an improved relaxation scheme.
    Cao BY
    J Chem Phys; 2008 Aug; 129(7):074106. PubMed ID: 19044759
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anomalous heat conduction behavior in thin finite-size silicon nanowires.
    Yang X; To AC; Tian R
    Nanotechnology; 2010 Apr; 21(15):155704. PubMed ID: 20332560
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modified data analysis for thermal conductivity measurements of polycrystalline silicon microbridges using a steady state Joule heating technique.
    Sayer RA; Piekos ES; Phinney LM
    Rev Sci Instrum; 2012 Dec; 83(12):124904. PubMed ID: 23278015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A high-precision apparatus for the characterization of thermal interface materials.
    Kempers R; Kolodner P; Lyons A; Robinson AJ
    Rev Sci Instrum; 2009 Sep; 80(9):095111. PubMed ID: 19791968
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimally accurate thermal-wave cavity photopyroelectric measurements of pressure-dependent thermophysical properties of air: theory and experiments.
    Kwan CH; Matvienko A; Mandelis A
    Rev Sci Instrum; 2007 Oct; 78(10):104902. PubMed ID: 17979449
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Joule heating induced transient temperature field and its effects on electroosmosis in a microcapillary packed with microspheres.
    Kang Y; Yang C; Huang X
    Langmuir; 2005 Aug; 21(16):7598-607. PubMed ID: 16042499
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular dynamics simulations of thermal resistance at the liquid-solid interface.
    Kim BH; Beskok A; Cagin T
    J Chem Phys; 2008 Nov; 129(17):174701. PubMed ID: 19045364
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermal relaxation of glycerol and propylene glycol studied by photothermal spectroscopy.
    Bentefour EH; Glorieux C; Chirtoc M; Thoen J
    J Chem Phys; 2004 Feb; 120(8):3726-31. PubMed ID: 15268535
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simple method to measure the thermal conductivity of technical superconductors, e.g., NbTi.
    Schmidt C
    Rev Sci Instrum; 1979 Apr; 50(4):454. PubMed ID: 18699530
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transient Thermal Response of a Guarded-Hot-Plate Apparatus for Operation Over an Extended Temperature Range.
    Thomas WC; Zarr RR
    J Res Natl Inst Stand Technol; 2018; 123():1-24. PubMed ID: 34877128
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A quantitative analysis of the thermal properties of porcine liver with glycerol at subzero and cryogenic temperatures.
    Choi JH; Bischof JC
    Cryobiology; 2008 Oct; 57(2):79-83. PubMed ID: 18656857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of DNA degradation using direct current conductivity and dynamic dielectric relaxation techniques.
    Sheu JI; Sheu EY
    AAPS PharmSciTech; 2006 Apr; 7(2):E36. PubMed ID: 16796354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heat analysis of biological tissue exposed to microwave by using thermal wave model of bio-heat transfer (TWMBT).
    Ozen S; Helhel S; Cerezci O
    Burns; 2008 Feb; 34(1):45-9. PubMed ID: 17624675
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A High-Temperature Transient Hot-Wire Thermal Conductivity Apparatus for Fluids.
    Perkins RA; Roder HM; Nieto de Castro CA
    J Res Natl Inst Stand Technol; 1991; 96(3):247-269. PubMed ID: 28184114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.