BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 19566245)

  • 1. Influence of thermal effects on buoyancy-driven convection around autocatalytic chemical fronts propagating horizontally.
    Rongy L; Schuszter G; Sinkó Z; Tóth T; Horváth D; Tóth A; De Wit A
    Chaos; 2009 Jun; 19(2):023110. PubMed ID: 19566245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers.
    Rongy L; Goyal N; Meiburg E; De Wit A
    J Chem Phys; 2007 Sep; 127(11):114710. PubMed ID: 17887873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Buoyancy-driven convection around exothermic autocatalytic chemical fronts traveling horizontally in covered thin solution layers.
    Rongy L; De Wit A
    J Chem Phys; 2009 Nov; 131(18):184701. PubMed ID: 19916617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marangoni-driven convection around exothermic autocatalytic chemical fronts in free-surface solution layers.
    Rongy L; Assemat P; De Wit A
    Chaos; 2012 Sep; 22(3):037106. PubMed ID: 23020497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics due to combined buoyancy- and Marangoni-driven convective flows around autocatalytic fronts.
    Budroni MA; Rongy L; De Wit A
    Phys Chem Chem Phys; 2012 Nov; 14(42):14619-29. PubMed ID: 23032937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the classification of buoyancy-driven chemo-hydrodynamic instabilities of chemical fronts.
    D'Hernoncourt J; Zebib A; De Wit A
    Chaos; 2007 Mar; 17(1):013109. PubMed ID: 17411245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rayleigh-Taylor instabilities in reaction-diffusion systems inside Hele-Shaw cell modified by the action of temperature.
    García Casado G; Tofaletti L; Müller D; D'Onofrio A
    J Chem Phys; 2007 Mar; 126(11):114502. PubMed ID: 17381215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional convection-driven fronts of the exothermic chlorite-tetrathionate reaction.
    Schuszter G; Pótári G; Horváth D; Tóth Á
    Chaos; 2015 Jun; 25(6):064501. PubMed ID: 26117124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steady Marangoni flow traveling with chemical fronts.
    Rongy L; De Wit A
    J Chem Phys; 2006 Apr; 124(16):164705. PubMed ID: 16674155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between buoyancy and diffusion-driven instabilities of propagating autocatalytic reaction fronts. I. Linear stability analysis.
    D'Hernoncourt J; Merkin JH; De Wit A
    J Chem Phys; 2009 Mar; 130(11):114502. PubMed ID: 19317540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Horizontally propagating three-dimensional chemo-hydrodynamic patterns in the chlorite-tetrathionate reaction.
    Pópity-Tóth É; Horváth D; Tóth Á
    Chaos; 2012 Sep; 22(3):037105. PubMed ID: 23020496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propagating fronts in fluids with solutal feedback.
    Mukherjee S; Paul MR
    Phys Rev E; 2020 Mar; 101(3-1):032214. PubMed ID: 32290010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction driven convection around a stably stratified chemical front.
    D'Hernoncourt J; Zebib A; De Wit A
    Phys Rev Lett; 2006 Apr; 96(15):154501. PubMed ID: 16712159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density fingering of an exothermic autocatalytic reaction.
    Bánsági T; Horváth D; Tóth A; Yang J; Kalliadasis S; De Wit A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):055301. PubMed ID: 14682835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convection in chemical fronts with quadratic and cubic autocatalysis.
    Vasquez DA; Thoreson E
    Chaos; 2002 Mar; 12(1):49-55. PubMed ID: 12779532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fingering of exothermic reaction-diffusion fronts in Hele-Shaw cells with conducting walls.
    D'Hernoncourt J; Kalliadasis S; De Wit A
    J Chem Phys; 2005 Dec; 123(23):234503. PubMed ID: 16392927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between buoyancy and diffusion-driven instabilities of propagating autocatalytic reaction fronts. II. Nonlinear simulations.
    D'Hernoncourt J; Merkin JH; De Wit A
    J Chem Phys; 2009 Mar; 130(11):114503. PubMed ID: 19317541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of convection on a propagating front with a liquid product: Comparison of theory and experiments.
    McCaughey B; Pojman JA; Simmons C; Volpert VA
    Chaos; 1998 Jun; 8(2):520-529. PubMed ID: 12779755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear fingering dynamics of reaction-diffusion acidity fronts: self-similar scaling and influence of differential diffusion.
    Lima D; D'Onofrio A; De Wit A
    J Chem Phys; 2006 Jan; 124(1):14509. PubMed ID: 16409043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convective dynamics of traveling autocatalytic fronts in a modulated gravity field.
    Horváth D; Budroni MA; Bába P; Rongy L; De Wit A; Eckert K; Hauser MJ; Tóth Á
    Phys Chem Chem Phys; 2014 Dec; 16(47):26279-87. PubMed ID: 25362974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.