These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 19566248)

  • 1. Effects of mucosal loading on vocal fold vibration.
    Tao C; Jiang JJ
    Chaos; 2009 Jun; 19(2):023113. PubMed ID: 19566248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of subglottal acoustics on laboratory models of phonation.
    Zhang Z; Neubauer J; Berry DA
    J Acoust Soc Am; 2006 Sep; 120(3):1558-69. PubMed ID: 17004478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A lumped mucosal wave model of the vocal folds revisited: recent extensions and oscillation hysteresis.
    Lucero JC; Koenig LL; Lourenço KG; Ruty N; Pelorson X
    J Acoust Soc Am; 2011 Mar; 129(3):1568-79. PubMed ID: 21428520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
    Zheng X; Bielamowicz S; Luo H; Mittal R
    Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of vocal fold stiffness on voice production in a three-dimensional body-cover phonation model.
    Zhang Z
    J Acoust Soc Am; 2017 Oct; 142(4):2311. PubMed ID: 29092586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibration in a self-oscillating vocal fold model with left-right asymmetry in body-layer stiffness.
    Zhang Z
    J Acoust Soc Am; 2010 Nov; 128(5):EL279-85. PubMed ID: 21110539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear source-filter coupling in phonation: theory.
    Titze IR
    J Acoust Soc Am; 2008 May; 123(5):2733-49. PubMed ID: 18529191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The minimum glottal airflow to initiate vocal fold oscillation.
    Jiang JJ; Tao C
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2873-81. PubMed ID: 17550186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voice simulation with a body-cover model of the vocal folds.
    Story BH; Titze IR
    J Acoust Soc Am; 1995 Feb; 97(2):1249-60. PubMed ID: 7876446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vocal dose measures: quantifying accumulated vibration exposure in vocal fold tissues.
    Titze IR; Svec JG; Popolo PS
    J Speech Lang Hear Res; 2003 Aug; 46(4):919-32. PubMed ID: 12959470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Study on the modeling of the glottic vibration: towards a nonlinear model of type stick and slip].
    Garrel R; Giovanni A; Ouaknine MA
    Rev Laryngol Otol Rhinol (Bord); 2007; 128(5):279-88. PubMed ID: 20387373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model.
    Zhang Z
    J Acoust Soc Am; 2016 Apr; 139(4):1493. PubMed ID: 27106298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An automatic method to quantify mucosal waves via videokymography.
    Jiang JJ; Zhang Y; Kelly MP; Bieging ET; Hoffman MR
    Laryngoscope; 2008 Aug; 118(8):1504-10. PubMed ID: 18545215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phonation thresholds as a function of laryngeal size in a two-mass model of the vocal folds.
    Lucero JC; Koenig LL
    J Acoust Soc Am; 2005 Nov; 118(5):2798-801. PubMed ID: 16334896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the biomechanical influence of epilaryngeal stricture on the vocal folds: a low-dimensional model of vocal-ventricular fold coupling.
    Moisik SR; Esling JH
    J Speech Lang Hear Res; 2014 Apr; 57(2):S687-704. PubMed ID: 24687007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dependence of phonation threshold pressure on vocal tract acoustics and vocal fold tissue mechanics.
    Chan RW; Titze IR
    J Acoust Soc Am; 2006 Apr; 119(4):2351-62. PubMed ID: 16642848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The physics of small-amplitude oscillation of the vocal folds.
    Titze IR
    J Acoust Soc Am; 1988 Apr; 83(4):1536-52. PubMed ID: 3372869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of chaotic vibrations in symmetric vocal folds.
    Jiang JJ; Zhang Y; Stern J
    J Acoust Soc Am; 2001 Oct; 110(4):2120-8. PubMed ID: 11681389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using the relaxation oscillations principle for simple phonation modeling.
    Garrel R; Scherer R; Nicollas R; Giovanni A; Ouaknine M
    J Voice; 2008 Jul; 22(4):385-98. PubMed ID: 17280814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulations of temporal patterns of oral airflow in men and women using a two-mass model of the vocal folds under dynamic control.
    Lucero JC; Koenig LL
    J Acoust Soc Am; 2005 Mar; 117(3 Pt 1):1362-72. PubMed ID: 15807024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.