These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
708 related articles for article (PubMed ID: 19566272)
1. Optimal speeds for walking and running, and walking on a moving walkway. Srinivasan M Chaos; 2009 Jun; 19(2):026112. PubMed ID: 19566272 [TBL] [Abstract][Full Text] [Related]
2. A model of bipedal locomotion on compliant legs. Alexander RM Philos Trans R Soc Lond B Biol Sci; 1992 Oct; 338(1284):189-98. PubMed ID: 1360684 [TBL] [Abstract][Full Text] [Related]
3. Biomechanical and physiological aspects of legged locomotion in humans. Saibene F; Minetti AE Eur J Appl Physiol; 2003 Jan; 88(4-5):297-316. PubMed ID: 12527959 [TBL] [Abstract][Full Text] [Related]
4. Constrained optimization in human walking: cost minimization and gait plasticity. Bertram JE J Exp Biol; 2005 Mar; 208(Pt 6):979-91. PubMed ID: 15767300 [TBL] [Abstract][Full Text] [Related]
5. Preferred and energetically optimal gait transition speeds in human locomotion. Hreljac A Med Sci Sports Exerc; 1993 Oct; 25(10):1158-62. PubMed ID: 8231761 [TBL] [Abstract][Full Text] [Related]
6. The mechanisms for minimizing energy expenditure in human locomotion. Saibene F Eur J Clin Nutr; 1990; 44 Suppl 1():65-71. PubMed ID: 2193805 [TBL] [Abstract][Full Text] [Related]
7. Reappraisal of the comparative cost of human locomotion using gait-specific allometric analyses. Rubenson J; Heliams DB; Maloney SK; Withers PC; Lloyd DG; Fournier PA J Exp Biol; 2007 Oct; 210(Pt 20):3513-24. PubMed ID: 17921153 [TBL] [Abstract][Full Text] [Related]
8. Computer optimization of a minimal biped model discovers walking and running. Srinivasan M; Ruina A Nature; 2006 Jan; 439(7072):72-5. PubMed ID: 16155564 [TBL] [Abstract][Full Text] [Related]
9. Optimal running speed and the evolution of hominin hunting strategies. Steudel-Numbers KL; Wall-Scheffler CM J Hum Evol; 2009 Apr; 56(4):355-60. PubMed ID: 19297009 [TBL] [Abstract][Full Text] [Related]
10. Caloric cost of walking and running. Fellingham GW; Roundy ES; Fisher AG; Bryce GR Med Sci Sports; 1978; 10(2):132-6. PubMed ID: 692303 [TBL] [Abstract][Full Text] [Related]
11. Mechanical energy in toddler gait. A trade-off between economy and stability? Hallemans A; Aerts P; Otten B; De Deyn PP; De Clercq D J Exp Biol; 2004 Jun; 207(Pt 14):2417-31. PubMed ID: 15184514 [TBL] [Abstract][Full Text] [Related]
12. The metabolic cost of changing walking speeds is significant, implies lower optimal speeds for shorter distances, and increases daily energy estimates. Seethapathi N; Srinivasan M Biol Lett; 2015 Sep; 11(9):20150486. PubMed ID: 26382072 [TBL] [Abstract][Full Text] [Related]
13. Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed. Neptune RR; Sasaki K J Exp Biol; 2005 Mar; 208(Pt 5):799-808. PubMed ID: 15755878 [TBL] [Abstract][Full Text] [Related]
14. The energetic costs of trunk and distal-limb loading during walking and running in guinea fowl Numida meleagris: I. Organismal metabolism and biomechanics. Marsh RL; Ellerby DJ; Henry HT; Rubenson J J Exp Biol; 2006 Jun; 209(Pt 11):2050-63. PubMed ID: 16709908 [TBL] [Abstract][Full Text] [Related]
15. The cost of transport of human running is not affected, as in walking, by wide acceleration/deceleration cycles. Minetti AE; Gaudino P; Seminati E; Cazzola D J Appl Physiol (1985); 2013 Feb; 114(4):498-503. PubMed ID: 23221963 [TBL] [Abstract][Full Text] [Related]
16. Constrained optimization in human running. Gutmann AK; Jacobi B; Butcher MT; Bertram JE J Exp Biol; 2006 Feb; 209(Pt 4):622-32. PubMed ID: 16449557 [TBL] [Abstract][Full Text] [Related]
17. Small step or giant leap? Human locomotion on Mars. Hawkey A J Br Interplanet Soc; 2004; 57(7-8):262-70. PubMed ID: 15856558 [TBL] [Abstract][Full Text] [Related]
18. Gait-specific metabolic costs and preferred speeds in ring-tailed lemurs (Lemur catta), with implications for the scaling of locomotor costs. O'Neill MC Am J Phys Anthropol; 2012 Nov; 149(3):356-64. PubMed ID: 22976581 [TBL] [Abstract][Full Text] [Related]
19. Biomechanical and energetic determinants of the walk-trot transition in horses. Griffin TM; Kram R; Wickler SJ; Hoyt DF J Exp Biol; 2004 Nov; 207(Pt 24):4215-23. PubMed ID: 15531642 [TBL] [Abstract][Full Text] [Related]
20. Muscle mechanical work and elastic energy utilization during walking and running near the preferred gait transition speed. Sasaki K; Neptune RR Gait Posture; 2006 Apr; 23(3):383-90. PubMed ID: 16029949 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]