BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 19566300)

  • 1. Dynamics of retinal photocoagulation and rupture.
    Sramek C; Paulus Y; Nomoto H; Huie P; Brown J; Palanker D
    J Biomed Opt; 2009; 14(3):034007. PubMed ID: 19566300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of pulse duration on size and character of the lesion in retinal photocoagulation.
    Jain A; Blumenkranz MS; Paulus Y; Wiltberger MW; Andersen DE; Huie P; Palanker D
    Arch Ophthalmol; 2008 Jan; 126(1):78-85. PubMed ID: 18195222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural changes of the retina after conventional laser photocoagulation and selective retina treatment (SRT) in spectral domain OCT.
    Framme C; Walter A; Prahs P; Regler R; Theisen-Kunde D; Alt C; Brinkmann R
    Curr Eye Res; 2009 Jul; 34(7):568-79. PubMed ID: 19899970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal modelling of micropulsed diode laser retinal photocoagulation.
    Berger JW
    Lasers Surg Med; 1997; 20(4):409-15. PubMed ID: 9142680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-damaging retinal phototherapy: dynamic range of heat shock protein expression.
    Sramek C; Mackanos M; Spitler R; Leung LS; Nomoto H; Contag CH; Palanker D
    Invest Ophthalmol Vis Sci; 2011 Mar; 52(3):1780-7. PubMed ID: 21087969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Therapeutic window of retinal photocoagulation with green (532-nm) and yellow (577-nm) lasers.
    Sramek CK; Leung LS; Paulus YM; Palanker DV
    Ophthalmic Surg Lasers Imaging; 2012 Jul; 43(4):341-7. PubMed ID: 22589338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the neuroinflammatory responses to selective retina therapy and continuous-wave laser photocoagulation in mouse eyes.
    Han JW; Choi J; Kim YS; Kim J; Brinkmann R; Lyu J; Park TK
    Graefes Arch Clin Exp Ophthalmol; 2018 Feb; 256(2):341-353. PubMed ID: 29322247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the therapeutic window of retinal photocoagulation by spatial and temporal modulation of the laser beam.
    Sramek C; Leung LS; Leng T; Brown J; Paulus YM; Schuele G; Palanker D
    J Biomed Opt; 2011 Feb; 16(2):028004. PubMed ID: 21361711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subvisible retinal laser therapy: titration algorithm and tissue response.
    Lavinsky D; Sramek C; Wang J; Huie P; Dalal R; Mandel Y; Palanker D
    Retina; 2014 Jan; 34(1):87-97. PubMed ID: 23873164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective targeting of the retinal pigment epithelium in rabbit eyes with a scanning laser beam.
    Framme C; Alt C; Schnell S; Sherwood M; Brinkmann R; Lin CP
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1782-92. PubMed ID: 17389512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of threshold irradiances and online dosimetry for selective retina treatment (SRT) in patients treated with 200 nanoseconds and 1.7 microseconds laser pulses.
    Framme C; Walter A; Prahs P; Theisen-Kunde D; Brinkmann R
    Lasers Surg Med; 2008 Nov; 40(9):616-24. PubMed ID: 18951425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser treatment of retinal diseases by subthreshold laser effects.
    Roider J
    Semin Ophthalmol; 1999 Mar; 14(1):19-26. PubMed ID: 10790572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigations on Retinal Pigment Epithelial Damage at Laser Irradiation in the Lower Microsecond Time Regime.
    Seifert E; Sonntag SR; Kleingarn P; Theisen-Kunde D; Grisanti S; Birngruber R; Miura Y; Brinkmann R
    Invest Ophthalmol Vis Sci; 2021 Mar; 62(3):32. PubMed ID: 33755044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transpupillary thermotherapy for age-related macular degeneration: long-pulse photocoagulation, apoptosis, and heat shock proteins.
    Mainster MA; Reichel E
    Ophthalmic Surg Lasers; 2000; 31(5):359-73. PubMed ID: 11011704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bubble formation as primary interaction mechanism in retinal laser exposure with 200-ns laser pulses.
    Roider J; El Hifnawi ES; Birngruber R
    Lasers Surg Med; 1998; 22(4):240-8. PubMed ID: 9603286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinal Pigment Epithelium Responses to Selective Retina Therapy in Mouse Eyes.
    Kim HD; Jang SY; Lee SH; Kim YS; Ohn YH; Brinkmann R; Park TK
    Invest Ophthalmol Vis Sci; 2016 Jun; 57(7):3486-95. PubMed ID: 27367516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of Micropulse Modes with Targeted Damage to the Retinal Pigment Epithelium Using Computer Modeling for the Development of Selective Individual Micropulse Retinal Therapy.
    Ivanova EV; Volodin PL; Guskov AV
    Curr Eye Res; 2022 Jan; 47(1):107-114. PubMed ID: 34607475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinal damage profiles and neuronal effects of laser treatment: comparison of a conventional photocoagulator and a novel 3-nanosecond pulse laser.
    Wood JP; Shibeeb O; Plunkett M; Casson RJ; Chidlow G
    Invest Ophthalmol Vis Sci; 2013 Mar; 54(3):2305-18. PubMed ID: 23439601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic temperature controlled retinal photocoagulation.
    Schlott K; Koinzer S; Ptaszynski L; Bever M; Baade A; Roider J; Birngruber R; Brinkmann R
    J Biomed Opt; 2012 Jun; 17(6):061223. PubMed ID: 22734753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refractive hazards of intraoperative retinal photocoagulation.
    Azzolini C; Docchio F; Brancato R
    Ophthalmic Surg; 1993 Jan; 24(1):16-23. PubMed ID: 8446327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.