These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 19566311)

  • 21. Thermoacoustic tomography with integrating area and line detectors.
    Burgholzer P; Hofer C; Paltauf G; Haltmeier M; Scherzer O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Sep; 52(9):1577-83. PubMed ID: 16285456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo non-ionizing photoacoustic mapping of sentinel lymph nodes and bladders with ICG-enhanced carbon nanotubes.
    Koo J; Jeon M; Oh Y; Kang HW; Kim J; Kim C; Oh J
    Phys Med Biol; 2012 Dec; 57(23):7853-62. PubMed ID: 23151772
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving tangential resolution with a modified delay-and-sum reconstruction algorithm in photoacoustic and thermoacoustic tomography.
    Pramanik M
    J Opt Soc Am A Opt Image Sci Vis; 2014 Mar; 31(3):621-7. PubMed ID: 24690661
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Image distortion in thermoacoustic tomography caused by microwave diffraction.
    Li C; Pramanik M; Ku G; Wang LV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031923. PubMed ID: 18517438
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo detection and imaging of low-density foreign body with microwave-induced thermoacoustic tomography.
    Nie L; Xing D; Yang S
    Med Phys; 2009 Aug; 36(8):3429-37. PubMed ID: 19746776
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging.
    Ku G; Fornage BD; Jin X; Xu M; Hunt KK; Wang LV
    Technol Cancer Res Treat; 2005 Oct; 4(5):559-66. PubMed ID: 16173826
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Imaging of high-intensity focused ultrasound-induced lesions in soft biological tissue using thermoacoustic tomography.
    Jin X; Xu Y; Wang LV; Fang YR; Zanelli CI; Howard SM
    Med Phys; 2005 Jan; 32(1):5-11. PubMed ID: 15719948
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gold nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic tomography.
    Zhang Q; Iwakuma N; Sharma P; Moudgil BM; Wu C; McNeill J; Jiang H; Grobmyer SR
    Nanotechnology; 2009 Sep; 20(39):395102. PubMed ID: 19726840
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Toward contrast-enhanced microwave-induced thermoacoustic imaging of breast cancer: an experimental study of the effects of microbubbles on simple thermoacoustic targets.
    Mashal A; Booske JH; Hagness SC
    Phys Med Biol; 2009 Feb; 54(3):641-50. PubMed ID: 19124946
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prospects of photoacoustic tomography.
    Wang LV
    Med Phys; 2008 Dec; 35(12):5758-67. PubMed ID: 19175133
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Versatile visualization of individual single-walled carbon nanotubes with near-infrared fluorescence microscopy.
    Tsyboulski DA; Bachilo SM; Weisman RB
    Nano Lett; 2005 May; 5(5):975-9. PubMed ID: 15884905
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reconstructions in limited-view thermoacoustic tomography.
    Xu Y; Wang LV; Ambartsoumian G; Kuchment P
    Med Phys; 2004 Apr; 31(4):724-33. PubMed ID: 15124989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Upconversion nanoparticles as a contrast agent for photoacoustic imaging in live mice.
    Maji SK; Sreejith S; Joseph J; Lin M; He T; Tong Y; Sun H; Yu SW; Zhao Y
    Adv Mater; 2014 Aug; 26(32):5633-8. PubMed ID: 24913756
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toward Quantitative Whole Organ Thermoacoustics With a Clinical Array Plus One Very Low-Frequency Channel Applied to Prostate Cancer Imaging.
    Patch SK; Hull D; See WA; Hanson GW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Feb; 63(2):245-55. PubMed ID: 26731749
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules.
    Welsher K; Liu Z; Daranciang D; Dai H
    Nano Lett; 2008 Feb; 8(2):586-90. PubMed ID: 18197719
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Immunologically Modified Nanosystem Based on Noncovalent Binding Between Single-Walled Carbon Nanotubes and Glycated Chitosan.
    Saha LC; Nag OK; Doughty A; Liu H; Chen WR
    Technol Cancer Res Treat; 2018 Jan; 17():1533033818802313. PubMed ID: 30261832
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organometallic carbonyl clusters: a new class of contrast agents for photoacoustic cerebral vascular imaging.
    Kong KV; Liao LD; Lam Z; Thakor NV; Leong WK; Olivo M
    Chem Commun (Camb); 2014 Mar; 50(20):2601-3. PubMed ID: 24471162
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photoacoustic molecular imaging with antibody-functionalized single-walled carbon nanotubes for early diagnosis of tumor.
    Xiang L; Yuan Y; Xing D; Ou Z; Yang S; Zhou F
    J Biomed Opt; 2009; 14(2):021008. PubMed ID: 19405721
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multifunctional polyelectrolyte microcapsules as a contrast agent for photoacoustic imaging in blood.
    Yashchenok AM; Jose J; Trochet P; Sukhorukov GB; Gorin DA
    J Biophotonics; 2016 Aug; 9(8):792-9. PubMed ID: 26913984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dual-modality photothermal optical coherence tomography and magnetic-resonance imaging of carbon nanotubes.
    Tucker-Schwartz JM; Hong T; Colvin DC; Xu Y; Skala MC
    Opt Lett; 2012 Mar; 37(5):872-4. PubMed ID: 22378422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.