These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 19566317)

  • 61. Tracking protein dynamics with photoconvertible Dendra2 on spinning disk confocal systems.
    Woods E; Courtney J; Scholz D; Hall WW; Gautier VW
    J Microsc; 2014 Dec; 256(3):197-207. PubMed ID: 25186063
    [TBL] [Abstract][Full Text] [Related]  

  • 62. High-definition mapping of neural activity using voltage-sensitive dyes.
    Cinelli AR
    Methods; 2000 Aug; 21(4):349-72. PubMed ID: 10964579
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Generating live cell data using total internal reflection fluorescence microscopy.
    Toomre D
    Cold Spring Harb Protoc; 2012 Apr; 2012(4):439-46. PubMed ID: 22474670
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Signal analysis of total internal reflection fluorescent speckle microscopy (TIR-FSM) and wide-field epi-fluorescence FSM of the actin cytoskeleton and focal adhesions in living cells.
    Adams MC; Matov A; Yarar D; Gupton SL; Danuser G; Waterman-Storer CM
    J Microsc; 2004 Nov; 216(Pt 2):138-52. PubMed ID: 15516225
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Investigating cell mechanics with atomic force microscopy.
    Haase K; Pelling AE
    J R Soc Interface; 2015 Mar; 12(104):20140970. PubMed ID: 25589563
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Synchronizing atomic force microscopy force mode and fluorescence microscopy in real time for immune cell stimulation and activation studies.
    Cazaux S; Sadoun A; Biarnes-Pelicot M; Martinez M; Obeid S; Bongrand P; Limozin L; Puech PH
    Ultramicroscopy; 2016 Jan; 160():168-181. PubMed ID: 26521163
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The physical basis of total internal reflection fluorescence (TIRF) microscopy and its cellular applications.
    Poulter NS; Pitkeathly WT; Smith PJ; Rappoport JZ
    Methods Mol Biol; 2015; 1251():1-23. PubMed ID: 25391791
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fast and long term lipid droplet tracking with CARS microscopy.
    Jüngst C; Winterhalder MJ; Zumbusch A
    J Biophotonics; 2011 Jun; 4(6):435-41. PubMed ID: 21445955
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Quantifying force transmission through fibroblasts: changes of traction forces under external shearing.
    Huth S; Blumberg JW; Probst D; Lammerding J; Schwarz US; Selhuber-Unkel C
    Eur Biophys J; 2022 Mar; 51(2):157-169. PubMed ID: 34713316
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A high-speed multispectral spinning-disk confocal microscope system for fluorescent speckle microscopy of living cells.
    Adams MC; Salmon WC; Gupton SL; Cohan CS; Wittmann T; Prigozhina N; Waterman-Storer CM
    Methods; 2003 Jan; 29(1):29-41. PubMed ID: 12543069
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Optimizing laser source operation for confocal and multiphoton laser scanning microscopy.
    McConnell G
    Curr Protoc Cytom; 2006 Nov; Chapter 2():Unit2.13. PubMed ID: 18770839
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Combining optical and atomic force microscopy for life sciences research.
    Vesenka J; Mosher C; Schaus S; Ambrosio L; Henderson E
    Biotechniques; 1995 Aug; 19(2):240-8, 849, 852-3. PubMed ID: 8527146
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Digital fluorescence microscopy.
    Tanke HJ
    Curr Protoc Cytom; 2001 May; Chapter 2():Unit 2.5. PubMed ID: 18770699
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Nonlinear Cellular Mechanical Behavior Adaptation to Substrate Mechanics Identified by Atomic Force Microscope.
    Mollaeian K; Liu Y; Bi S; Wang Y; Ren J; Lu M
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30400365
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Total internal reflection microscopy and atomic force microscopy (TIRFM-AFM) to study stress transduction mechanisms in endothelial cells.
    Mathur AB; Truskey GA; Reichert WM
    Crit Rev Biomed Eng; 2000; 28(1-2):197-202. PubMed ID: 10999387
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Nanomechanics of Cells and Biomaterials Studied by Atomic Force Microscopy.
    Kilpatrick JI; Revenko I; Rodriguez BJ
    Adv Healthc Mater; 2015 Nov; 4(16):2456-74. PubMed ID: 26200464
    [TBL] [Abstract][Full Text] [Related]  

  • 77. In silico CDM model sheds light on force transmission in cell from focal adhesions to nucleus.
    Milan JL; Manifacier I; Beussman KM; Han SJ; Sniadecki NJ; About I; Chabrand P
    J Biomech; 2016 Sep; 49(13):2625-2634. PubMed ID: 27298154
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Combination of AFM with an objective-type total internal reflection fluorescence microscope (TIRFM) for nanomanipulation of single cells.
    Nishida S; Funabashi Y; Ikai A
    Ultramicroscopy; 2002 May; 91(1-4):269-74. PubMed ID: 12211478
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Near Simultaneous Laser Scanning Confocal and Atomic Force Microscopy (Conpokal) on Live Cells.
    Sandin JN; Aryal SP; Wilkop T; Richards CI; Grady ME
    J Vis Exp; 2020 Aug; (162):. PubMed ID: 32865532
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Direct Force Measurements of Subcellular Mechanics in Confinement using Optical Tweezers.
    Català-Castro F; Venturini V; Ortiz-Vásquez S; Ruprecht V; Krieg M
    J Vis Exp; 2021 Aug; (174):. PubMed ID: 34542528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.