BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 19566338)

  • 1. Automated segmentation of tissue structures in optical coherence tomography data.
    Gasca F; Ramrath L; Huettmann G; Schweikard A
    J Biomed Opt; 2009; 14(3):034046. PubMed ID: 19566338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical validation of an algorithm for rapid and accurate automated segmentation of intracoronary optical coherence tomography images.
    Chatzizisis YS; Koutkias VG; Toutouzas K; Giannopoulos A; Chouvarda I; Riga M; Antoniadis AP; Cheimariotis G; Doulaverakis C; Tsampoulatidis I; Bouki K; Kompatsiaris I; Stefanadis C; Maglaveras N; Giannoglou GD
    Int J Cardiol; 2014 Apr; 172(3):568-80. PubMed ID: 24529948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speckle Reduction in 3D Optical Coherence Tomography of Retina by A-Scan Reconstruction.
    Cheng J; Tao D; Quan Y; Wong DW; Cheung GC; Akiba M; Liu J
    IEEE Trans Med Imaging; 2016 Oct; 35(10):2270-2279. PubMed ID: 27116734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speckle attenuation by adaptive singular value shrinking with generalized likelihood matching in optical coherence tomography.
    Chen H; Fu S; Wang H; Lv H; Zhang C
    J Biomed Opt; 2018 Mar; 23(3):1-8. PubMed ID: 29595018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated layer segmentation of optical coherence tomography images.
    Lu S; Cheung CY; Liu J; Lim JH; Leung CK; Wong TY
    IEEE Trans Biomed Eng; 2010 Oct; 57(10):2605-8. PubMed ID: 20595078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learnable despeckling framework for optical coherence tomography images.
    Adabi S; Rashedi E; Clayton A; Mohebbi-Kalkhoran H; Chen XW; Conforto S; Nasiriavanaki M
    J Biomed Opt; 2018 Jan; 23(1):1-12. PubMed ID: 29368458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-vivo segmentation and quantification of coronary lesions by optical coherence tomography images for a lesion type definition and stenosis grading.
    Celi S; Berti S
    Med Image Anal; 2014 Oct; 18(7):1157-68. PubMed ID: 25077844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intra-retinal layer segmentation in optical coherence tomography images.
    Mishra A; Wong A; Bizheva K; Clausi DA
    Opt Express; 2009 Dec; 17(26):23719-28. PubMed ID: 20052083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speckle-constrained variational methods for image restoration in optical coherence tomography.
    Yin D; Gu Y; Xue P
    J Opt Soc Am A Opt Image Sci Vis; 2013 May; 30(5):878-85. PubMed ID: 23695318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement and bias removal of optical coherence tomography images: An iterative approach with adaptive bilateral filtering.
    Sudeep PV; Issac Niwas S; Palanisamy P; Rajan J; Xiaojun Y; Wang X; Luo Y; Liu L
    Comput Biol Med; 2016 Apr; 71():97-107. PubMed ID: 26907572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spiking cortical model-based nonlocal means method for speckle reduction in optical coherence tomography images.
    Zhang X; Li L; Zhu F; Hou W; Chen X
    J Biomed Opt; 2014 Jun; 19(6):066005. PubMed ID: 24919448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated segmentation and enhancement of optical coherence tomography-acquired images of rodent brain.
    Baran U; Zhu W; Choi WJ; Omori M; Zhang W; Alkayed NJ; Wang RK
    J Neurosci Methods; 2016 Sep; 270():132-137. PubMed ID: 27328369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deformation-induced speckle-pattern evolution and feasibility of correlational speckle tracking in optical coherence elastography.
    Zaitsev VY; Matveyev AL; Matveev LA; Gelikonov GV; Gelikonov VM; Vitkin A
    J Biomed Opt; 2015 Jul; 20(7):75006. PubMed ID: 26172612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining region-based and imprecise boundary-based cues for interactive medical image segmentation.
    Jones JL; Xie X; Essa E
    Int J Numer Method Biomed Eng; 2014 Dec; 30(12):1649-66. PubMed ID: 25377853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DHNet: High-resolution and hierarchical network for cross-domain OCT speckle noise reduction.
    Zhou Y; Li J; Wang M; Peng Y; Chen Z; Zhu W; Shi F; Wang L; Wang T; Yao C; Chen X
    Med Phys; 2022 Sep; 49(9):5914-5928. PubMed ID: 35611567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Choroidal vasculature characteristics based choroid segmentation for enhanced depth imaging optical coherence tomography images.
    Chen Q; Niu S; Yuan S; Fan W; Liu Q
    Med Phys; 2016 Apr; 43(4):1649. PubMed ID: 27036564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical Models of Signal and Noise and Fundamental Limits of Segmentation Accuracy in Retinal Optical Coherence Tomography.
    Dubose TB; Cunefare D; Cole E; Milanfar P; Izatt JA; Farsiu S
    IEEE Trans Med Imaging; 2018 Sep; 37(9):1978-1988. PubMed ID: 29990154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Denoising and 4D visualization of OCT images.
    Gargesha M; Jenkins MW; Rollins AM; Wilson DL
    Opt Express; 2008 Aug; 16(16):12313-33. PubMed ID: 18679509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach.
    Yazdanpanah A; Hamarneh G; Smith BR; Sarunic MV
    IEEE Trans Med Imaging; 2011 Feb; 30(2):484-96. PubMed ID: 20952331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-Time Automatic Segmentation of Optical Coherence Tomography Volume Data of the Macular Region.
    Tian J; Varga B; Somfai GM; Lee WH; Smiddy WE; DeBuc DC
    PLoS One; 2015; 10(8):e0133908. PubMed ID: 26258430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.